Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент количества движения, полный симметричных волчков

Молекулы с длинными цепями 217 Момент количества движения 75, 85,151,163 Момент количества движения, полный, / асимметричных волчков 55, 56, 57 линейных молекул 27 симметричных волчков 35, 38 Момент перехода 44, 274, 443, 451 Моменты инерции 25 асимметричных волчков 57, 517 влияние на колебательный изотопический эффект 251, 257 влияние на термодинамические функции 536, 540, 552 главные 25  [c.616]


Классическое движение. В сферическом волчке, в отличие от симметричного волчка, мгновенная ось вращения всегда совпадает с направлением полного момента количества движения ). Иначе говоря, молекула совершает простое вращение вокруг неподвижной оси, которая может иметь любую ориентацию по отношению к молекуле. Любая ось, связанная с молекулой, может рассматриваться как ось волчка, и она совершает простое вращение вокруг вектора Р. Составляющая вектора Р по любой оси, закрепленной в молекуле, имеет постоянную величину. Согласно (1,19) частота вращения вокруг такой оси волчка равняется нулю. Неподвижный конус, который рассматривался при изучении движения симметричного волчка (фиг. 7), вырождается в прямую.  [c.51]

Классическое движение. Как всегда, полный момент количества движения Р системы при вращательном движении остается постоянным по величине и направлению. Однако в этом случае в молекуле уже нет более такого направления, вдоль которого составляющая вектора Р имела бы постоянное зна- чение (как это имеет место для симметричного волчка). Иначе говоря, в общем 4 лучае не существует связанной, с молекулой оси, которая совершала би  [c.55]

Согласно квантовой механике, составляющая полного момента количества движения по оси любого симметричного волчка равняется целому (или, при нечетном числе электронов, полуцелому) кратному величины Л/2тг. Так как колебательный момент С,- в общем случае не равен целому кратному Л/2тг, то отсюда следует, что и чисто вращательный момент относительно оси волчка также не равен целому кратному /г/2тг однако сумма обоих моментов имеет целочисленное значение (=Л Л/2тс).  [c.431]

Однако для трижды вырожденных колебательных состояний кориолисово взаимодействие вызывает расщепление. Это легче всего обнаружить, если рассмотреть колебание молекулы ХУ4, приведенное на фиг. 41. Если вращение происходит вокруг оси 2 и возбуждена составляющая то силы Кориолиса стремятся возбудить составляющую и не действуют на составляющую 7з(,. Ввиду этого в данном случае происходит расщепление на три компоненты, причем одна из них сохраняет первоначальное значение частоты. Так же как и для симметричного волчка, два других колебания являются такими линейными комбинациями первоначальных колебаний и зе> которые под действием сил Кориолиса уже не стремятся переходить друг в друга. Как и прежде, эти две линейные комбинации образуют два круговых колебания (по часовой стрелке и против нее) с моментами количества движения р. В действительности, силы, действующие на ядра У, не одинаковы во всех направлениях, движение отличается от кругового и является эллиптическим. Момент р параллелен или антипараллелен полному моменту количества движения.  [c.475]


J, квантовое число полного момента количества движения (и правила отбора дли него) асимметричных волчков 57, 69, 73, 497, 520 линейных молекул 26, 31, 32, 399, 409, 426 молекул со свободным внутренним вращением 529 симметричных волчков 51, 54, 481, 487 J, полный момент количества движения асимметричных волчков 57 линейных молекул 27 симметричных волчков 35, 38 сферических волчков 51 J, J" у), вращательные квантовые числа верхнего и нижнего состояний 31, 43  [c.635]

К, квантовое число составляющей момента количества движения вокруг оси симметричного волчка 36, 428, 431 правило отбора 41—-43, 44, 74, 443, 469 К, составляющая полного момента количества движения симметричного волчка вокруг оси волчка 26, 38, 431 К, тонкая структура параллельных полос 453, 432 К, удвоение 57, 63, 71, 437, 443  [c.636]

В электронных состояниях, не вырожденных орбитально, спин-орбитальная связь обычно очень мала точно так же, как в электронных состояниях Е линейных или двухатомных молекул (случай Ъ но Гунду), но с увеличением / и А" она возрастает. Введем теперь, как и для линейных молекул, квантовое число N полного момента количества движения, за исключением снина, которое заменит J во всех предыдущих формулах для симметричного волчка. Прибавляя к 3" спин получаем полный момент количества движения  [c.89]

Р , Ру, Р , Р , Р-, Р , составляю Цие индуцироианного дипольного момента 263 Р , Ру. P . операторы полного момента количества движения 226. 403, 431 P , составляющая полного момента количества движения ikj оси волчка 36, 38 PQR, структура ветвей параллельных полос симметричных волчков 448 (], постоянная удвоения типа I 407, 419, 423 q , координаты смещения 86, 222 Q, ветвь в инфракрасных полосах асимметричных волчков 501, 507, 511, 514 линейных молекул 409, 414, 415, 417  [c.637]

Уровни энергии Согласно квантовой механике, уровни энергии асимметричного волчка не могут быть представлены в явном виде формулой, аналогичной формуле для симметричного во.1чка (1,20). Поэтому мы попытаемся дать сперва качественное представление о схеме уровней энергии. Полный момент количества движения J для заданного уровня энергии, как всегда, имеет постоянную величину и направление. Момент количества движения является квантованной величиной, а именно, может принимать значения, равные  [c.57]

В классической механике движения, соответствуюп1,ие одному и тому же значению полного момента количества движения, получаются из движения, изображенного на ф1П. 16, а, если одновременно сдвигать неподвижную плоскость и менять размеры эллипсоида энергии так, чтобы величина 2Г/ ( = Р оставалась постоянной. Согласно квантовой механике из бесконечного числа таких движений может происходить лишь 2У-1-1 соответственно 2У-1-1 положениям неподвижной плоскости и 2У- -1 размерам эллипсоида энергии. При наинизшем положении плоскости (наибольшем расстоянии (1) и наибольшем значении энергии (наибольшем значении 2Т) наибольшая ось эллипсоида энергии перпендикулярна плоскости, т. е. мы имеем простое вращение вокруг оси, которой соответствует наименьший момент инерции. Хотя самый высокий квантовый уровень = 4-У и пе обладает в точности наибольшим классическим значением энергии, мы можем заключить, что этот уровень приближенно соответствует вращению вокруг оси, для которой получается наименьший момент инерции (в предельном случае симметричного волчка, для которого эта ось является осью волчка этот уровень соответствует и изображен в правой части фиг. 17). Точно так же мы видим, что самый низкий уровень -г = — У приближенно соответствует простому вращению вокруг оси, для которой получается наибольший момент инерции К=3 в предельном случае симметричного волчка, у которого эта ось является осью волчка, что изображено -В левой части фиг. 17).  [c.58]


В случае перпендикулярных полос каждая подполоса также будет состоять из нескольких подполос, по две на каждое значение нижнего состояния (так как Д/Г( = 1). Ввиду того Что для молекул типа СаН8 доля энергии, определяемая внутренним вращением, согласно (4,118), равна АК , структура подполосы (с заданным значением К и ДЛ") вполне подобна структуре полной перпендикулярной полосы при отсутствии свободного вращения (фиг. 128). Разница состоит только в том, что расстояние между ветвями Q, вырожденными в линии, равно 2А, а не 2 (Л — В). Действительно, как мы видели раньше (стр. 457), интервал между подполосами равен 2Л(1—С,) — 23 в силу взаимодействия составляющих вдоль оси волчка вращательного и колебательного моментов количества движения. Точно так же, согласно Говарду (см. выше), расстояние между подполосами в силу взаимодействия внутренних вращательного и колебательного моментов количества движения (если, как это часто бывает, верхнее состояние типа симметрии Е случайно совпадает с одним из состояний типа симметрии Е") равно 2Л(1—С,). Таким образом, в перпендикулярной полосе молекулы, являющейся симметричным волчком и обладающей свободным внутренним вращением, каждая из вырожденных в линии ветвей Q фиг. 128 будет расщеплена на ряд почти равноотстоящих линий с интервалом 2В (пренебрегая зависимостью Л и й от к). Такая структура полос до сих пор не обнаружена.  [c.528]


Смотреть страницы где упоминается термин Момент количества движения, полный симметричных волчков : [c.619]    [c.637]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.35 , c.38 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Движение волчка

Движение симметричное

Количество движения

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Момент количеств движения

Момент количества движени

Момент количества движения волчка

Момент количества движения, полный

Момент полный



© 2025 Mash-xxl.info Реклама на сайте