Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гигроскопичность

К недостаткам метанола по сравнению с бензином можно отнести также его гигроскопичность, повышенные корродирующие свойства, агрессивность к некоторым пластмассам, повышенную токсичность паров (ПДК,паров метанола в 2 раза ниже, чем бензина), затрудненный пуск двигателя. Преимущества метанола — значительные запасы сырья, относительная простота технологии получения метанола из углей, более высокий диапазон по избытку воздуха для осуществления эф<) ктивного сгорания в двигателе. Метанол как топливо для автомобилей в определенной степени может стать заменителем бензина при условии использования специально спроектированных двигателей для работы на спиртовых топливах.  [c.53]


Образующиеся продукты атмосферной коррозии металлов, как правило, остаются на металле, хорошо с ним сцепленными, и оказывают большее (на свинце и алюминии) или меньшее (на никеле и цинке) защитное действие, уменьшая скорость коррозии со временем (рис. 271). Ускорение коррозии железа в начальный период обусловлено большой гигроскопичностью продуктов коррозии (ржавчины), защитное действие которых начинает сказываться только при значительной толщине.  [c.381]

Одним из наиболее важных свойств продуктов коррозии является их гигроскопичность. Так, на поверхности меди в атмосфере, загрязненной сернистым газом, выкристаллизовываются продукты коррозии (сернокислая медь), которые интенсивно поглощают влагу и тем самым способствуют усилению коррозии. Гигроскопичны также продукты коррозии никеля, образующиеся при действии на него сернистой кислоты. Хлористый цинк, быстро образующийся на цинке в атмосфере, загрязненной парами соляной кислоты, также весьма гигроскопичен. Наоборот, продукты коррозии алюминия, образующиеся в промыщленной атмосфере, хорощо предохраняют металл от разрущения даже при наличии в атмосфере сернистого газа.  [c.180]

Органические наполнители — это материалы на основе целлюлозы. Они снижают хрупкость смол и сохраняют малый удельный вес, однако увеличивают гигроскопичность и уменьшают термостойкость пластмасс.  [c.342]

Высокая раскислительная способность керамических флюсов позволяет вести сварку по окисленным кромкам (монтажное строительство, судостроение). Керамические флюсы используют и для сварки цветных металлов — меди и ее сплавов, алюминия и его сплавов и др. Основной недостаток керамических флюсов состоит в том, что они обладают повышенной гигроскопичностью, что требует хранения их в герметичной таре и прокалки перед сваркой.  [c.374]

Наибольшее значение в электрической изоляции имеют синтетические смолы полимеризационные и конденсационные. Общим недостатком конденсационных смол является то, что при их отвержении происходит выделение воды или других низкомолекулярных веществ, остатки которых могут ухудшить электроизоляционные свойства смолы. Кроме того, молекулы конденсационных смол, как правило, содержат полярные группы, что повышает их тангенс угла диэлектрических потерь и гигроскопичность полимеризационные же смолы могут быть и неполярными (например, полимеры углеводородного состава, политетрафторэтилен).  [c.132]


Пропиточные лаки служат для пористой, в частности, волокнистой изоляции (бумага, картон, пряжа, ткань, изоляция обмоток электрических машин и аппаратов). После пропитки поры в изоляции оказываются запол.ч енными уже не воздухом, а высохшим лаком, имеющим значительно более высокую электрическую прочность и теплопроводность, чем воздух. Поэтому п результате пропитки повышается пробивное напряжение, увеличивается теплопроводность (это важно для отвода теплоты потерь), уменьшается гигроскопичность, улучшаются механические свойства изоляции. После пропитки органическая волокнистая изоляция в. меньшей мере  [c.132]

Клеящие лаки применяются для склеивания между собой твердых электроизоляционных материалов (например, клейка листочков расщепленной слюда при изготовлении миканитов) или для приклеивания их к металлу. Помимо высоких электроизоляционных свойств и малой гигроскопичности (общие требования для всех электроизоляционных лаков), клеящие лаки должны обеспечивать особо высокую адгезию к склеиваемым материалам.  [c.133]

Высокая гигроскопичность хлористого натрия и его агрессивные свойства усиливают коррозию из-за увеличения времени нахождения  [c.8]

МДж/кг. По геологическому происхождению они близки к торфу. В бурых углях достаточно велико содержание летучих Vl = 654-40 %), водорода (Н " = 4ч-6,5 % и более) и кислорода (О = 15-=-30 %). Они отличаются высокой гигроскопичностью и влажностью, содержание углерода достаточно велико (С " = = 554-78 %), а количество слаборазложившихся растительных  [c.26]

В эксплуатации электрической изоляции вредное влияние оказывает повышенная влажность окружающей среды. Влага, проникая в изоляцию, ухудшает ее электроизоляционные свойства и может быть причиной выхода из строя. Степень влияния влажности окружаю-ш,ей среды на изоляцию зависит от гигроскопичности последней.  [c.110]

Полиметилметакрилат из-за хорошей прозрачности часто называют органическим стеклом. Это полярный термопластичный диэлектрик с малой гигроскопичностью и значительной химостойкостью применяется как конструкционно-изоляционный материал, в том числе для изготовленная корпусов приборов, шкал, линз и пр. Из-за довольно высоких дугогасящих свойств применяется в выключающей аппаратуре. Листовое органическое стекло хорошо поддается механической обработке, легко сваривается и склеивается.  [c.124]

Черные битумно-масляные лаки дают менее гигроскопичные пленки, чем чисто масляные лаки, с более высокими электрическими параметрами, но менее стойкие против действия растворителей и нефтяного масла. Известной маслостойкостью обладают так называемые жирные лаки с большим содержанием масла. Жирные лаки дают более гибкие пленки и имеют большее применение, чем тощ,ие (с малым содержанием масла). Жирные лаки обычно горячей сушки. Тош,ие лаки могут быть лаками холодной сушки. Растворителями битумно-масляных лаков являются уайт-спирит, толуол, ксилол, сольвент, скипидар. В качестве разбавителя может быть применен бензин.  [c.154]

Непропитанные волокнистые материалы представляют собой смесь волокон и воздуха, заполняющего поры. Поэтому электрические и механические параметры при прочих равных условиях зависят от плотности материалов. Чем меньше плотность (больше воздуха), тем меньше tg б при малых напряженностях, но тем меньше электрическая прочность. При пропитке (заполнении пор пропитывающим диэлектриком) эти параметры увеличиваются, причем на степень увеличения влияют свойства пропиточных материалов. Пропитка уменьшает гигроскопичность волокнистых материалов, сильно замедляет процесс увлажнения. Эти закономерности присущи всем волокнистым материалам.  [c.168]

К другим видам слоистых пластиков относятся древеснослоистые пластики (ДСП) типа фанеры на бакелитовой смоле, более дешевые, чем гетинакс, но с худшими электроизоляционными свойствами и более гигроскопичные.  [c.219]

К недостаткам дерева относятся высокая гигроскопичность, нестандартность свойств, низкая нагревостойкость и горючесть. При  [c.228]

Так как бумажная пропитанная изоляция имеет большую гигроскопичность, то при ее использовании необходимо применять металлические оболочки (свинцовые или алюминиевые), которые защищаются от механических повреждений и коррозии специальными покрытиями. Силовые кабели с поясной изоляцией составляют по-  [c.259]


Гигроскопичность, влагопроницаемость, влаго- и водопоглощаемость и смачиваемость материала в большей мере зависят от химического состава и структуры материала. Большую роль играют наличие и размер пор и капилляров в материале, в которые проникает влага.  [c.41]

Таким образом, поливиниловый спирт представляет собой линейный полимер несимметричной структуры. Наличие гидроксильной группы ОН в каждом звене цепи определяет высокую гигроскопичность и полярность поливинилового спирта. Растворяется же он только В воде. В органических растворителях не растворяется. Имеет довольно высокую механическую прочность (Ор = 350 кГ/см , удлинение равно 200%, р = 10 ом/см, Епр = 10—20 кв/мм).  [c.88]

Термопластичные полимеры имеют линейное строение молекул. Обладают весьма высокой механической прочностью и эластичностью растворимы в ограниченном количестве растворителей (крезоле, расплавленном феноле). Широко применяются для изготовления искусственных волокон, гибких пленок и пластмасс. Обладают относительно высокой гигроскопичностью.  [c.89]

Пластики. Пластики представляют собой синтетические высокомолекулярные соединения, получаемые полимеризацией или поликонденсацией мономеров — веществ, состоящих из простых молекул с малой молекулярной массой. Пластики как конструкционный материал, обладают низкими прочностью (в 10 — 30 раз меньше, чем -сталей), жссткостъкт (в 20 — 200 раз меньше, чем у сталей), ударной вязкостью (в 20 — 50 раз меньше, чем у сталей), твердостью (в 10-100 раз меньше, чем у сталей), теплостойкостью (100—250°С), теплопроводностью (в 100 - 400 раз меньше, чем у сталей) и малой стабильностью формы, обусловленной низкой жесткостью, гигроскопичностью, ползучестью (свойственной миопии пластикам) и высоким коэффициентом линейного расширения (в 5-20 раз  [c.189]

Снижение относительной влажности. Может быть осуществлено путем увеличения температуры воздуха или, еще лучше, постоянным удалением находящейся в нем влаги. Во многих случаях достаточно понижения относительной влажности до 50 %, но если в воздухе присутствует гигроскопичная пыль или другие примеси, 50 %-ная влажность слишком велика. Этот способ защиты э( х )ективен, за исключением тех случаев, когда коррозия вызывается кислыми парами от находящейся рядом непросушен-ной древесины или некоторыми летучими составляющими пластических материалов или красок.  [c.179]

Скорость разрушения может быть значительной и в разбавленных, и в концентрированных щелочах. По этой причине при катодной защите алюминия следует избегать перезащиты, чтобы не допустить разрушения металла в результате концентрирования щелочей на катодной поверхности. Агрессивны по отношеиню к алюминию известь Са(0Н)2 и некоторые высокоосновные органические амины (но не NH4OH). Свежий портландцемент содержит известь и также агрессивен, поэтому на поверхности алюминия при контакте с влажным бетоном может наблюдаться выделение водорода. После отверждения бетона скорость коррозии уменьшается. Однако, если он увлажняется или содержит гигроскопичные соли (например, СаСУ, коррозия продолжается.  [c.346]

Керамические флюсы весьма гигроскопичны, могут также содержать гидратную влагу, а поэтому содержани водорода в наплавленном металле под керамическими флюсами может быть несколько выше.  [c.377]

Существенными недостатками покрытий на неорганических связующих являются их гигроскопичность, низкая влагостойкость и высокая пористость, поэтому при ирпользовании таких покрытий необходимо принимать специальные Меры по предотвращению коррозии металлической подложки, например нанести подслой органического происхождения.  [c.91]

Качество покрытий на жидком стекле существенно зависит от режима сушки, при которой выделяется влага с поверхности покрытия и одновременио происходит своеобразный подсос ее нижних слоев. Неравномерное влаговыделение вызывает неравномерную усадку и, следовательно, трещины на покрытии. Поэтому основной задачей термообработки покрытий на неорганических связках является обеспечение равномерного отвода влаги. Так, покрытие Z-93 сушится на воздухе при температуре 25—30°С в течение 16—20 ч. Первый и второй слои покрытии I и II сушат при температуре 100°С в течение часа, а последний — в течение двух часов при температуре 200°С. Такие различия в термообработке, по-видимому, объясняются различием гигроскопичности компонентов.  [c.92]

К недостаткам карбамида относится плохая спаиваемость его, сравнительно высокий удельный вес (1,34 г/см ), что затрудняет выполнение технологических операций с крупными модельными блоками, а также гигроскопичность и неприятный запах.  [c.182]

Карбамидные составы гигроскопичны, поэтому модели следует хранить на сухом воздухе и в закрытых тарах с силикогелями.  [c.188]

Неэлектрические испытания имеют целью определить механические (прочность, твердость, гибкость, эластичность), физические (плотность, вязкость) и химические (например, кислотность масла) свойства термические характеристики (теплопроводность, нагрево-и холодостойкость) и характеристики, связанные с воздействием влаги (гигроскопичность, растворимость, влагопроницае-мость), и др.  [c.7]

Фтороорганические жидкости имеют малый tg б, ничтожно малую гигроскопичность и высокую нагревостойкость. Некоторые фторорганические жидкости могут длительно работать при температуре 200 С и выше.  [c.130]

Смолы - применяемое в практике, хотя и не вполне строгое научное название обширной группы материалов, характериз>тощихся как некоторым сходством химической природы (это сложные смеси органических веществ, главным образом высокомолекулярных), так и некоторыми общими для них физическиш свойствами. При достаточно низких температурах смолы - это аморфные, стеклообразные массы, более или менее хрупкие. При нагреве смолы (если только они ранее не претерпевают химических изменений) размягчаются, становясь пластичными, а затем жидкими. Применяемые в электроизоляционной технике смолы большей частью ж растворимы в воде и мало гигроскопичны, но растворимы в близких по химической природе органических растворителях. Обычно смолы обладают клейкостью и при переходе из жидкого состояния в твердое (при охлаждении расплава или при испарении летучего растворителя из раствора) прочно прилипают к соприкасающимся с ними твердым телам.  [c.131]


Ископаемые твердые топлива делят на торф, бурые, каменные угли и антрацит. Торф — геологически наиболее молодое твердое топливо. Характеризуется невысокой степенью разложения органических остатков и относительно низкой теплотой сгорания, повышенным содержанием летучих (К 70 %), водорода (Н = = 5-f-6 %), кислорода (O " > 30 %) и азота (N = 2- 2,5 %). Торфу свойственна очень высокая гигроскопичность и влажность (WP = 35- 60 %).  [c.26]

У гигроскопичных материалов объемная проводимость возрастает при нахождении их во влажном воздухе за счет поглощения влаги, которое происходит тем сильней, чем больше относительная влажность воздуха. Это явление обратимое при удалении гигроскопической воды сушкой сопротивление восстанавливается. У диэлектриков, не обладающих объемной влагопоглощаемостью, например у плотной керамики, объемная проводимость практически не зависит от влажности окружающего воздуха. У влажных диэлектриков на практике часто наблюдается зависимость сопротивления от температуры, аналогичная представленной на рис. 2-13. Максимум в графике зависимости сопротивления от температуры объясняется удалением гигроскопической влаги за счет г)егдсушки.  [c.52]

Гигроскопичность диэлектриков зависит от их структуры и состава. Неполярные органические диэлектрики, например парафин, полиэтилен, полипропилен, обладают очень малой гигроскопичностью, почти не поглощают влаги из возду а и даже при длительном пребывании во влажной среде сохраняют хорошие диэлектрические свойства. Полярные диэлектрики обладают обычно большей гигроскопичностью, причем закрепление полярных молекул воды около полярных групп молекул диэлектрика замедляет поглощение влаги и равновесное состояние (предельное влагопоглоще-ние) наступает в них за большее время, чем у неполярных. Некоторые вещества, поглощая влагу, образуют с ней твердый коллоидный раствор — набухают. У таких диэлектриков (например, целлюлозные материалы) влагопоглощение может быть очень большим и вызывать сильное ухудшение электрических параметров. Наличие в диэлектриках водорастворимых составных частей и солей повышает их гигроскопичность. Многие неорганические диэлектрики, обладающие плотной структурой, например стекло, непористая керамика, практически не обнаруживают объемного поглощения воды. Проникновение влаги в диэлектрик может происходить через имеющиеся в нем поры. По своему характеру пористость может быть открытой в виде каверн на поверхности закрытой — в виде внутренних воздушных пустот, не сообщающихся с окружающей средой сквозной — в виде каналов, пронизывающих диэлектрик насквозь. Наибольшее влияние на электрические параметры оказывает влага, попадающая в сквозные поры. Конденсируясь на их стенках, вода образует сплошные пленки повышенной проводимости. Имеют значение и размеры пор, которые могут быть разными от макроскопических до суб-микроскопических размером (5—10)-10 см.  [c.110]

Особый вид волокнистого материала представляют собой плетеные или вязаные чулки (пустотелые шнуры), являющиеся основой лакированных трубок. Структура волокнистых материалов предопределяет некоторые их видовые свойства. К числу таковых относятся большая поверхность при сравнительно малой толш,ине в исходном состоянии, неоднородность, вызванная наличием макроскопических пор, т. е. промежутков между отдельными волокнами и нитями и связанная с ней гигроскопичность. Сами растительные волокна обладают известной пористостью, микроскопической и субмикроскопической, которую образуют, например, мельчайшие капилляры. Некоторые волокнистые материалы имеют в своем составе гидрофильные ( водолюбивые ) составные части, способные поглощ,ать влагу из воздуха, набухая при этом и образуя коллоидные системы примерами таких (объемно-гигроскопичных) волокон является клетчатка и др. Материалы, состоящие из волокон, не обладающих объемной гигроскопичностью, как правило, абсорбируют влагу из воздуха за счет наличия пор и смачиваемости поверхности волокон водой, что вследствие сильно развитой поверхности волокон может послужить причиной значительной общей гигроскопичности. Само собой понятно, что материалы из объемно-гигроскопичных волокон будут обладать особенно большой гигроскопичностью. У тканей электрическая прочность определяется пробоем воздуха в макроскопических порах. В бумагах и картонах образование крупных сквозных пор менее вероятно. Так или иначе, но наличие воздушных пор приводит к тому, что все пористые волокнистые материалы обладают сравнительно низкой электрической прочностью, тем меньшей, чем меньше структурная плотность материала. В связи с вышеописанными общими свойствами волокнистых материалов в большинстве случаев их применения требуется пропитка, в результате которой повышается электрическая прочность и снижается скорость поглощения влаги.  [c.164]

Во многих д.чэлектриках, используемых в электрической изоляции, величина р сильно зависит от их увлажнения. Даже малое количество влаги, поглощенное гигроскопическим образом, может существенно уменьшить его сопротивление. Молекулы воды хорошо диссоциируют на ионы, в воде растворяются частицы примесей, обычно содержащихся в технических диэлектриках солей, остатков ка гализагоров, кислот, щелочей и других трудно устранимых из материала ионогенных веществ. Влага с растворенными ионоген-иыми примесями проникает в поры и микротрещины, впитывается капиллярами, распределяется по границам раздела в многокомпонентном диэлектрике. Количество поглощенной изоляцией влаги. 1ЙВИСИТ от влажности окружающего воздуха и времени выдержки -образца во влажной атмосфере или в воде, если изоляция работает в контакте с водой. Процесс уменьшения Pt, изоляции имеет обратимый характер. При высушивании поглощенная влага удаляется и р,, возрастает. Для предотвращения увлажнения изоляции поверхность гигроскопичных материалов защищается не смачиваемыми водой водостойкими материалами, препятствующими проникновению влаги. Например, пористые электрокерамические материалы покрываются глазурью пористые диэлектрики пропитываются жидкими или твердеющими компонентами, которые плохо увлажняются.  [c.144]

Волокнистые материалы состоят преимущественно из частиц удлиненной формы — волокон, промежутки между которыми заполнены воздухом у непропитанных материалов и природными или синтетическими смолами у пропитанных. Преимуществами многих волокнистых материалов являются невысокая стоимость, доволь но большая механическая прочность, гибкость и удобство обработки Недостатки — невысокие электрическая прочность и теплопровод ность. более высокая, чем у массивчых материалов того же состава гигроскопичность. Прогипка улучп1ает свойства волокнистых мате риалов.  [c.228]

Для волокнистой изоляции, которая имеет ТИ 105, характерны большая толщина изоляции (0,1—0,2 мм) и гигроскопичность, невысокая электрическая прочность, что ограничивает их использование без дополнительных покрытий, которыми, как правило, являются эмаль-лаки на масляной, поливинилацеталевой, полиэфирной и других основах. В связи с этим в качестве полуфабриката при производстве этих проводов используются эмалированные провода.  [c.251]

Титан, выплавленный из губки, поставляется потребителям в герметичной металлической таре во избежание насыщения влагой воздуха, так как следы хлористого магния являются весьма гигроскопичными. Крупность отдельных кусков 1 убки не должна превышать 50 мм.  [c.365]


Смотреть страницы где упоминается термин Гигроскопичность : [c.115]    [c.378]    [c.378]    [c.179]    [c.316]    [c.200]    [c.140]    [c.44]    [c.175]    [c.88]    [c.130]    [c.314]   
Смотреть главы в:

Справочник по деревообработке Издание 2  -> Гигроскопичность

Справочник по деревообработке Издание 2 (копия)  -> Гигроскопичность

Справочник азотчика том №2  -> Гигроскопичность


Электротехнические материалы (1976) -- [ c.110 , c.111 ]

Машиностроение Энциклопедия Т IV-12 (2004) -- [ c.127 ]

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 , c.7 , c.136 , c.554 ]

Справочник по электротехническим материалам Т1 (1986) -- [ c.40 ]

Электротехнические материалы Издание 6 (1958) -- [ c.26 ]

Материалы в радиоэлектронике (1961) -- [ c.115 , c.117 , c.139 , c.175 ]

Электротехнические материалы Издание 3 (1955) -- [ c.108 , c.111 ]

Справочник по электрическим материалам Том 1 (1974) -- [ c.58 , c.105 ]

Электротехнические материалы Издание 3 (1976) -- [ c.110 , c.111 , c.164 ]

Справочник рабочего литейщика Издание 3 (1961) -- [ c.145 ]

Погрузочно-разгрузочные работы с насыпными грузами (1989) -- [ c.8 ]

Основы технологии автостроения и ремонт автомобилей (1976) -- [ c.417 , c.420 ]

Справочник по электротехническим материалам (1959) -- [ c.79 ]

Справочник азотчика том №2 (1969) -- [ c.0 ]



ПОИСК



Аммиачная селитра гигроскопичность

Боткин. Гигроскопичность олеата моноэтаноламина как свойство водомаслорастворимого ингибитора коррозии

Водологлощение и гигроскопичность

Г газ природный гигроскопичность

Гигроскопичность асбеста

Гигроскопичность и влагопроницаемость диэлектриков

Гигроскопичность кальциевой селитры

Гигроскопичность карбамида

Гигроскопичность лакокрасочной пленки

Гигроскопичность смешанных удобрений

Гигроскопичность сульфата аммония

Гигроскопичность электроизоляционных материалов

Карбамид (Мочевина) гигроскопичность

Определение влажности и гигроскопичности

Определение глинистой составляющей гигроскопичности смеси

Определение сорбционной влажности (гигроскопичности)

Стержневые Гигроскопичность

Формовочные Гигроскопичность



© 2025 Mash-xxl.info Реклама на сайте