Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность межслойном отрыве

Рассматриваемый вид испытаний значительно менее распространен по сравнению с испытаниями целых колец. Объясняется это, по-видимому, более жесткими требованиями к технике эксперимента, связанными с повышенной точностью установки колец, трудностью нагружения и меньшим практическим значением разрезных колец как элемента конструкции. Однако возможности методов испытаний разрезных колец довольно велики. Эти методы дают возможность определить не только модуль упругости Е% и модуль сдвига Саг, но также прочность при отрыве в трансверсальном направлении Пг, определение которой другими методами практически затруднено, а также прочность при межслойном сдвиге Пе .  [c.230]


При испытаниях сегментов кольца теоретически можно определить прочность межслойного сдвига Пе , прочность по окружным напряжениям Пе, сопротивление межслойному отрыву П и модуль упругости Eq. Однако ряд особенностей испытаний сегментов колец из армированных пластиков накладывает весьма жесткие ограничения на возможности этого метода.  [c.233]

Прочность по окружным напряжениям Пе и сопротивление межслойному отрыву П целесообразно определять из опытов на чистый изгиб. Трудности возникают при реализации этой схемы нагружения. Применяемая в случае призматических стержней четырехточечная схема пригодна только при малых перемещениях в случае же сегментов кольца ее трудно осуществить, не создавая в образце осевые нагрузки. Поэтому предпочтительно нагружение сегментов моментами, приложенными к концам образца. Применяемое для этой цели приспособление описано в разделе 4.3.  [c.236]

При осевом растяжении кольцо с тщательно обработанными боковыми поверхностями приклеивается к двум металлическим дискам, которые растягиваются, как это показано на рис. 6.4.1. Метод применим только для колец, намотанных из отдельных нитей или ровницы если кольцо намотано из ткани, то прочность его при осевом растяжении может превысить прочность клеевых швов. Сопротивление межслойному отрыву определяется по формуле  [c.238]

Создание межслойных связей. Радикальное увеличение сопротивления межслойному сдвигу и поперечному отрыву связано с созданием межслойных связей. Технологически это осуществляется разными путями. В ра- ботах [90, 91] показаны методы возможного увеличения прочности между слоями композиционных материалов. Исследование прошитых волокнами  [c.9]

Характерной особенностью ряда высокомодульных композитов является суш ественная анизотропия упругих свойств самих армирующих волокон. Например, для углепластиков в зависимости от исходного материала, параметров карбонизации, усилия вытяжки и последующей термической обработки отношение модулей вдоль ( д) и поперек (Е г) волокон может достигать 40—50. Наряду с хорошо изученными особенностями волокнистых композитов — плохим сопротив.пением межслойному сдвигу и поперечному отрыву — появляется новый фактор — существенная разница упругих свойств вдоль и поперек волокон. Сопоставление углепластиков со стеклопластиками и боропластиками (см. табл. 1) свидетельствует о том, что при практически одинаковой анизотропии прочности у первых намного выше анизотропия упругих свойств. Это порождает ряд принципиальных особенностей при анализе результатов испытаний для материалов на основе анизотропных волокон и оценке пх несущей способности, связанных с повышенной податливостью композита в поперечном направлении.  [c.11]


Часто технология прессования и намотки такова, что создаваемое межслойное контактное давление оказывается недостаточным для устранения в композите технологических нарушений монолитности структуры — пор и пустот, т. е. мест, где отсутствует сцепление между волокнами и матрицей. Такие несовершенства структуры композита, мало влияя на прочность при растяжении в направлении волокон, могут значительно сказаться на прочности и жесткости при сжатии, межслойном сдвиге и поперечном отрыве. Типичные данные, полученные [32, 33 ] при испытаниях стеклотекстолитов, показаны на рис. 1.3.8. Особенно характерны данные о прочности при сжатии и межслойном сдвиге. Прочность резко снижалась уже при сравнительно небольшой пористости увеличение же пористости  [c.43]

К основным требованиям, предъявляемым к конструкции клеевых соединений, относятся выполнение их по возможности по большим поверхностям обеспечение нагружения большей их части и в направлении максимальной прочности соединения. Первое требование обусловлено тем, что прочность т при сдвиге у ПМ меньше, чем прочность а при растяжении например, у карбопластиков т/СТр=1/15-1/35, а у ПВХ Стр = 80 МПа и т = 30-40 МПа. Поскольку прочности нахлесточного соединения жестких материалов при сжатии, сдвиге и расслаивании относятся как 1000 100 1, то должно обеспечиваться нагружение клеевого соединения сдвиговыми напряжениями и исключаться нагружение отдирающими или расслаивающими напряжениями. Нагружение соединения слоистых ПМ в направлении, перпендикулярном слоям наполнителя, не допускается, поскольку, например, у эпоксидных боропластов межслойная прочность при отрыве в 2 раза ниже меж-слойной прочности при сдвиге.  [c.511]

Одним 113 главных преимуществ ориентированных стеклопластиков является высокая удельная прочность в направлении армирования. Практическая реализация этого иреимуще-ства ограничена трудностями, обусловленными относительно низким сопротивлением ориентированных стеклопластиков межслойному сдвигу = 25 50 МПа, "= 2000 2500 МПа) и поперечному отрыву (/ i= 20- 55 МПа), а также сравнительно малой жесткостью ( П 25- 60 ГПа) даже в направлении укладки волокон. Несущая способность тонкостенных конструкций, работающих на устойчивость, в результате сравнительно низкой жесткости стеклопластиков часто теряется задолго до достижения напряжениями предельных значений [56, 80]. 1 1рн создании толстостенных изделий указанные отрицательные особенности начинают проявляться более ярко, так как возрастает число технологических факторов, определяющих эти особенности [6].  [c.6]

Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

Композиционным материалам с однонаправленным и перекрестным расположением волокон, когда необходимая толщина изделия создается последовательной укладкой армирующих слоев,. присущи низкая сдвиговая и низкая трансверсальная прочность. Модуль упругости и предел прочности при межслойном сдвиге и поперечном растяжении— сжатии в таких композициях более чем на порядок отличаются от модуля Юнга и прочности в направлении армирования. В ряде случаев эта особенность может препятствовать реализации высоких прочности и жесткости композиций в конструкциях. Повышение прочности сцепления матриц с волокнами путем их поверхностной обработки способствует увеличению прочности материала при сдвиге и сжатии, но не является эффективным средством повышения упругих характеристик при этих видах нагружения. Существенное возрастание жесткости и прочности при межслойном сдвиге, а также сопротивления материала поперечному отрыву достигается созданием в нем поперечных связей. Материалы с пространственно сшитой арматурой (многослойные ткани), используют при создании стеклопластиков и органоволокнитов. Основной недостаток их — значительное искривление волокон основы, что приводит к резкому снижению характеристик механических свойств композиций в этом направлении. Для высокомодульных углеродных и борных волокон наиболее приемлема схема трехмерного армирования изотропных текстильных материалов ИТМ, при которой волокна сохраняют прямолинейность. В этом случае в разных направлениях могут быть уложены различные волокна, благодаря чему образуется многокомпонентный материал.  [c.591]


Большинство слоистых и волокнистых композитов слабо сопротивляются межслойному сдвигу и поперечному отрыву. Сопротивление сдвигу характеризуется отношениями Е Шхг и Пх/Пхх, сопротивление поперечному отрыву и сжатию перпендикулярно волокнам — отношениями Ех1Ех, пущ, пуп-. Здесь Е п Е — модули упругости в направлениях х и г Охг — модуль межслойного сдвига Пх и Пг — прочность В направлениях  [c.189]

Намотанные кольца из материалов со слоистой или волокнистой структурой обладают отчетливо выраженной анизотропией модуль Юнга в окружном направлении 9 (определяется жесткой арматурой) значительно выше, чем в радиальном Е , и выше модуля межслойного сдвига Сэг. Причем степень анизотропии растет для материалов, армированных высокомодульными волокнами (см. гл. 1). Прочность при растяжении в направлении арматуры Щ значительно превышает сопротивление поперечному отрыву П и сжатию П7 перпендикулярно волокнам, а также прочность при сдвиге Пе . Такая существенная анизотропия механических свойств ограничивает область применения широко известных зависимостей сопротивления материалов для обработки результатов испытаний, полученных в предположении бесконечной трансверсальной и сдвиговой жесткости материала, т. е. при Сег = оо и , = Именно поэтому в дальнейшем везде указаны геометрические границы, начиная с которых для разных классов материала необходим учет толстостенности. Для высокомодульных материалов особое значение приобретает знак радиальных напряжений о/, необходимо устранят .  [c.207]


Смотреть страницы где упоминается термин Прочность межслойном отрыве : [c.232]    [c.43]    [c.158]   
Методы статических испытаний армированных пластиков Издание 2 (1975) -- [ c.231 , c.238 ]



ПОИСК



Отрыв

Прочность при отрыве



© 2025 Mash-xxl.info Реклама на сайте