Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ц икл двигателя внутреннего подводом теплоты)

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном объеме. Принцип действия двигателей с подводом теплоты при постоянном объеме виден из рис. 8.11. Кривая 1—2 — адиабатическое сжатие рабочего тела участок 2—3 соответствует изохорическому подводу теплоты, а 3—4 — адиабатическому расширению  [c.524]

Двигатели внутреннего сгорания подразделяют на двигатели, работающие по смешанному циклу, двига ге,)1и с подводом теплоты при постоянном объеме и двигатели с подводом теплоты при постоянном дав,ле-пии.  [c.282]


Газотурбинные двигатели также относят к двигателям внутреннего сгорания. Газотурбинные двигатели можно разделить на двигатели с подводом теплоты при постоянном давлении и двигатели с подводом теплоты при постоянном объеме. Наибольшее применение в современных газотурбинных двигателях нашел способ подвода теплоты при постоянном давлении.  [c.112]

Это выражение очень часто используется в расчетах, так как огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах), а также целый ряд процессов химической технологии и многих других осуществляется при постоянном давлении. Кстати, по этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии, а не внутренней энергии.  [c.18]

Анализ такого цикла с точки зрения теории тепловых процессов невозможен, а поэтому термодинамика исследует не реальные процессы двигателей внутреннего сгорания, а идеальные, обратимые циклы. В качестве рабочего тела принимают идеальный газ с постоянной теплоемкостью. Цилиндр заполнен постоянным количеством рабочего тела. Разность температур между источником теплоты и рабочим телом бесконечно малая. Подвод теплоты к рабочему телу осуществляется от внешних источников теплоты, а не за счет сжигания топлива. То же необходимо сказать и об отводе теплоты.  [c.262]

Таким образом, изучение идеальных термодинамических циклов позволяет производить при принятых допущениях анализ и сравнение работы различных двигателей и выявлять факторы, влияющие на их экономичность. Диаграмма, построенная при указанных условиях, является не индикаторной диаграммой двигателя внутреннего сгорания, а ру-диаграммой цикла с подводом теплоты при постоянном объеме.  [c.262]

По циклу с изохорным подводом теплоты работают двигатели внутреннего сгорания на легких и газообразных топливах.  [c.264]

Таким образом, исследования показывают, что в двигателях внутреннего сгорания с подводом теплоты при постоянном объеме нельзя применять высокие степени сжатия. В связи с этим рассматриваемые двигатели имеют относительно низкие к. п. д.  [c.264]

В цилиндре двигателя внутреннего сгорания находится воздух при температуре 500 С. Вследствие подвода теплоты конечный объем воздуха увеличился в 2,2 раза. В процессе расширения воздуха давление в цилиндре практически оставалось постоянным.  [c.78]


Рабочее тело поршневого двигателя внутреннего сгорания со смешанным подводом теплоты обладает свойствами воздуха. Известны начальные параметры pi = = 0,1 МПа, = 30° С и следующие характеристики цикла е = 7, Я = 2,0 и р = 1,2.  [c.153]

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном объеме. 16.2. Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном давлении. 16.3. Цикл двигателя внутреннего сгорания со смешанным подводом теплоты. 16.4. Сравнение циклов двигателей внутреннего сгорания. 16.5. Рабочий процесс компрессора.  [c.512]

Цикл реального теплового двигателя, в котором процессы подвода теплоты к рабочему телу и отвода теплоты от него рассматриваются как внутренне равновесные, несмотря на необратимый характер теплообмена между рабочим телом и источником теплоты, а все остальные процессы считаются обратимыми, называется теоретическим циклом.  [c.522]

ЦИКЛ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ПОДВОДОМ ТЕПЛОТЫ ПРИ ПОСТОЯННОМ ОБЪЕМЕ  [c.534]

Рис. 16.10. Схема двигателя внутреннего сгорания со смешанным подводом теплоты Рис. 16.10. Схема <a href="/info/738">двигателя внутреннего сгорания</a> со смешанным подводом теплоты
Проблема повышения экономичности поршневых двигателей внутреннего сгорания, газотурбинных установок и реактивных двигателей связана с дальнейшим увеличением температуры рабочего тела в процессе подвода теплоты, что должно быть обеспечено путем создания новых жаропрочных материалов, разработки новых способов охлаждения рабочих элементов тепловых двигателей (цилиндры, поршни, лопатки). Одним из перспективных направлений, связанных с проблемой повыше-132  [c.132]

Цикл реального теплового двигателя, в котором процессы подвода теплоты к рабочему телу и отвода теплоты от него рассматриваются как внутренне равновесные, несмотря на необратимый характер теплообмена между рабочим телом и источником теплоты, а все остальные процессы считаются обратимыми, называют теоретическим циклом. В тепловых двигателях в работу превращается теплота. Поэтому в формуле (8.1) для КПД вместо JЕ И Js удобнее писать количество подводимой и отводимой за цикл теплоты (/j и отнесенные к единице массы рабочего тела.  [c.509]

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном давлении (рис. 8.12). Отношение объемов v /v называют степенью предварительного расширения и обозначают буквой р.  [c.525]

Интересно отметить, что вечный двигатель второго рода одноразового действия не запрещается вторым законом, Подведем теплоту к газу в цилиндре с неподвижно закрепленным поршнем, приращение внутренней энергии газа равно подведенной теплоте, поскольку работа не совершается (поршень неподвижен, и = 0). Поместим после этого цилиндр в адиабатную оболочку и дадим газу расшириться совершенная работа будет равна Ад, ибо теплообмена в процессе расширения нет. Если газ идеальный, то его температура в конце расширения будет равна температуре перед подводом теплоты, однако объем будет больше и повторение описанной операции (периодически действующая машина) невозможно.  [c.40]

Двигателями внутреннего сгорания называются тепловые двигатели поршневого типа, в которых сгорание топлива (подвод теплоты) и превращение ее в работу происходят непосредственно внутри рабочего цилиндра.  [c.109]

Простейшими циклами газотурбинных установок считаются циклы с изобарным либо изохорным подводом теплоты. Эти циклы отличаются от соответствующих циклов двигателей внутреннего  [c.115]

В курсе технической термодинамики и в теории двигателей внутреннего сгорания принято рассматривать еще идеальный цикл с изобарным подводом теплоты.  [c.232]


Далее примем, что по линии -d-d происходит не сгорание топлива, связанное с химическим изменением состава газа (меняется газовая постоянная), а обратимым путем подводится извне теплота Qj, такая же, какая выделяется топливом при его сгорании. Также примем, что теплота, уносимая отработавшими газами в атмосферу, может быть заменена теплотой Q , обратимым путем отводимой от газов. При таких предпосылках можно принять, что двигатели внут- реннего сгорания работают по обратимым термодинамическим циклам. Процессы сжатия и расширения будем считать происходящими по обратимым адиабатам, а обратимость изохорных и изобарных процессов, заменяющих действительные процессы сгорания топлива и выхлопа продуктов сгорания, осуществляется с помощью любого числа точечных источников и приемников теплоты. Такого рода идеализация действительных процессов в двигателях является общепринятой, и в данном случае мы ей последуем. Более подробное изучение действительных процессов, происходящих в цилиндре двигателя, является делом специального курса двигателей внутреннего сгорания.  [c.234]

К газообразным продуктам сгорания, находящимся в цилиндре двигателя внутреннего сгорания, подводится при постоянном давлении столько теплоты, что температура смеси поднимается с 500 до 1900° С. Состав газовой смеси следующий гпсо, = 15% /Ио, = == 5% /Пн,о = 6% Wn, = 74%.  [c.78]

Для идеального цикла поршневого двигателя внутреннего сгорания с подводом теплоты при v — onsi определить параметры в характерных точках, полученную работу, термический к. п. д., количество подведенной и отведенной теплоты, если дано Pi = 0,1 МПа = 20 С е = 3,6 X = 3,33 k = 1,4.  [c.142]

Для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при v = onst определить параметры характерных для цикла точек, количества подведенной и отведенной теплоты, термический к. п. д. цикла и его полезную работу, если дано  [c.144]

В цикле поршневого двигателя внутреннего сгорания с подводом теплоты при v = onst степень сжатия е = 5, степень увеличения давления X = 1,5.  [c.144]

Построить график зависимости термического к. п. д. от степени сжатия для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при и = = onst для значений в от 2 до 10 при Л = 1,37.  [c.144]

Для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при р = onst определить параметры в характерных точках, полезную работу, количество подведенной и отведенной теплоты и термический к. п. д., если дано pi 100 кПа, = 70 е — 12 k 1,4 р — 1,67. Рабочее тело — воздух. Теплоемкость принять постоянной.  [c.149]

Найти давление и объем в характерных точках цикла поршневого двигателя внутреннего сгорания с подводом теплоты при р = onst, а также термический к. п. д. и полезную работу, если дано р = 100 кПа, е = 14 р = 1,5 k = 1,4.  [c.149]

Найти термический к. п. д. этого цикла и сравнить его с циклом поршневого двигателя внутреннего сгорания с подводом теплоты при р = onst при одинаковых степенях сжатия е и при одинаковых степенях расширения р. Представить цикл в диаграмме Ts.  [c.156]

Рис. 16,3, Теоретический цикл двигателя внутреннего сгорания с подводом теплоты при V = oпst (Г—з-диа-грамма) Рис. 16,3, <a href="/info/626666">Теоретический цикл двигателя внутреннего сгорания</a> с подводом теплоты при V = oпst (Г—з-диа-грамма)
Рис. 16.12. Теоретический цикл двигателя внутреннего сгорания со смешанным подводом теплоты (Т—з-ди-аграмма) Рис. 16.12. <a href="/info/626666">Теоретический цикл двигателя внутреннего сгорания</a> со смешанным подводом теплоты (Т—з-ди-аграмма)
Поршневые двигатели внутреннего сгорания (ДВС) благодаря высокой экономичности, небольшой массе, быстрому запуску нашли широкое примеиеиие в различных отраслях промышленности, особенно в авиации и на транспорте. ДВС относятся к тепловым двигателям, в которых все рабочие процессы протекают внутри рабочих цилиндров. Рабочим телом в ДВС являются в начале воздух или смес] , воздуха с топливом, а в конце — смесь газов, образовавшаяся при сгорании топлива. Теплота к рабочему телу подводится от сжигаемого топлива внутри цилиндров двигателя, в которых расширяющийся от нагревания газ перемещает поршень. Полученная газом эиергия частично расходуется на совершение механической работы, а остальная часть отдается окружающей среде.  [c.67]

Тепловые двигатели, в которых подвод теплоты к рабочему телу осуществляется в результате сгорания топлива внутри данного двигателя, называются двигателями внутреннего сгорания. В таких двигателях топливо сгорает в цилиндре или в камере сгорания двигателя, а рабочим телом являются некон-денсирующиеся газы — воздух и продукты сгорания. Причем на первом этапе рабочим телом является воздух или смесь воздуха с парами топлива, а на втором этапе — газообразные про-9 131  [c.131]

Рис. 8.11. Двигатель внутреннего сгорания с подводом теплоты при V = onst Рис. 8.11. <a href="/info/738">Двигатель внутреннего сгорания</a> с подводом теплоты при V = onst

Цикл двигателя внутреннего сгорания со смешанным подводом теплоты. С точки зрения термодинамики подвод теплоты при V = onst более выгоден, чем при р = = onst, так как средняя температура при этом выше. Одйако при изобарном сгораиии наблюдается большая степень сжатия, что приводит к повышению КПД. Поэтому целесообразнее применять цикл со смешанным подводом теплоты, в котором реализуются преимущества как цикла с подводом теплоты при постоянном объеме, так и цикла с подводом теплоты при р = onst.  [c.526]

С позиций термодинамики двигатель внутреннего сгорания, как и любой тепловой двигатель, должен был бы работать по циклу Карно, имеющему самый высокий термический к. п. д. в заданном интервале температур Тщах.--Ттт- Однако из-за конструктивных трудностей двигатель внутреннего сгорания, в котором подвод и отвод теплоты происходили бы по изотермам, построить не удается.  [c.111]

Практически наиболее удобно подводить теплоту по изохоре либо по изобаре или смешанным способом — по изохоре и изобаре. В соответствии с этим для двигателей внутреннего сгорания разработаны три теоретических цикла, имеющих практическое значение.  [c.112]

Из расположения линий, характеризующих процессы подвода теплоты в этих двух циклах (см. рис. 7.2), следует, что средняя температура подводимой тепло1Ы в цикле с р = onst больше, чем в цикле с а = onst поэтому r tp > ip-j. Однако двигатели внутреннего сгорания с изобарным подводом теплоты обладают рядом существенных конструктивных недостатков (имеют специальный компрессор для распыления топлива, который забирает часть полезной работы в цикле и снижает экономичность двигателя устройство форсунок сложное н др.).  [c.114]

Задача 7.1. Определить параметры в узловых точках цикла двигателя внутреннего сгорания с подводом теплоты при v = onst, а также термический к. п. д. цикла и установить его зависимость от степени сжатия, приняв е = 4, 6. 8, 10. 12.  [c.129]


Смотреть страницы где упоминается термин Ц икл двигателя внутреннего подводом теплоты) : [c.279]    [c.535]    [c.537]    [c.538]    [c.133]    [c.527]    [c.199]    [c.232]    [c.232]   
Курс термодинамики Издание 2 (1967) -- [ c.74 ]



ПОИСК



168 ¦ Подвод

Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом теплоты при постоянном объПотери в реальных поршневых двигателях и пути повышения их

Ц икл двигателя внутреннего

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном давлении

Цикл двигателя внутреннего сгорания с подводом теплоты при постоянном объеме

Цикл двигателя внутреннего сгорания со смешанным подводом теплоты



© 2025 Mash-xxl.info Реклама на сайте