Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связи динамические пассивные

Настоящий раздел посвящен описанию других инерционных устройств, действие которых основано на использовании инерционно упругой системы с удерживающими связями и сил инерции. Эти устройства могут предназначаться для измерения параметров вибрации как в назначенной системе отсчета (НСО), так и в собственной системе отсчета (ССО) тела. В первом случае силы инерции используются пассивно — только для создания инерциальной системы отсчета, во-втором — активно, т. е. для создания процесса измерения. Соответственно этому рассматриваемые устройства подразделяют на инерционные устройства кинематического принципа измерения и динамического принципа измерения (сейсмического типа). Теория работы этих устройств одинакова с теорией работы датчиков ИД, рассмотренной в предыдущих разделах главы, поэтому все приведенные ранее основные уравнения и зависимости приложимы и к этим устройствам. Следует отметить также измерительные устройства ИД, предназначенные для измерения максимальных ускорений [6, 17] (см. гл. VI, раздел 4).  [c.180]


Статическая жесткость пассивного гидравлического возбудителя высока в связи с малой сжимаемостью рабочей жидкости. Поэтому между изолируемым объектом и штоком гидроцилиндра устанавливают упругую прокладку 9. Динамическая жесткость системы мала в связи с уменьшением гидравлического сопротивления потоку рабочей жидкости через дросселирующие отверстия колеблющегося золотника. При замыкании цепи обратной связи можно получить собственную частоту системы, значительно меньшую 1 Гц.  [c.250]

Механическую систему, представленную в виде совокупности соединенных между собой активных и пассивных элементов, называют механической цепью. Предполагается, что механическая цепь с приемлемой точностью отражает динамические свойства исходной механической системы. Места соединения элементов называют узлами. Соединение двух и более пассивных элементов называют звеном. Для всякой системы можно указать места, через которые осуществляется ее связь со средой. Место, в котором к системе прикладывается воздействие, называют входом. Выходом называют место, в котором оценивают реакцию системы. Вход (или выход) системы, характеризующийся обобщенными координатой и силой, называют полюсом. В общем случае вход и выход системы могут быть многополюсными. Любой элемент механической цепи имеет по крайней мере два полюса. Элемент, имеющий два полюса, называют двухполюсником. Возможны механические цепи, составленные из п-полюсников, однако на практике наиболее распространены цепи, состоящие из двухполюсников [48-50.  [c.31]

Так и обстоит дело при наличии родовых пассивных связей, т. е. в случае несовпадения кинематической и динамической характеристики механизма. Но лишние неизвестные при кинетостатическом анализе могут выявиться и при индивидуальных пассивных связях. Возьмем, например, известный механизм эллипсографа, т. е. шатун с двумя ползунами на концах. При действии на него плоской системы сил все реакции могут быть определены из уравнений кинетостатики неизменяемой системы (фиг. 86). Но если мы введём криво  [c.80]

В разработке пассивных разделительных фильтров важную роль играет их конструкция, а также выбор типа конкретных элементов — конденсаторов, а-тушек индуктивности, резисторов, в частности, большое влияние на характеристики АС с фильтрами оказывает взаимное размещение катушек индуктивности, при их неудачном расположении вследствие взаимной связи возможны наводки сигнала между близко расположенными катушками. По этой причине нх рекомендуется располагать взаимно перпендикулярно, только такое расположение позволяет свести к минимуму лх влияние друг на друга. Катушки индук--тивности являются одним из важнейших компонентов пассивных разделительных фильтров. В настоящее время многие зарубежные фирмы применяют катушки индуктивности на сердечниках нз магнитных материалов, обеспечивающих большой динамический диапазон, низкий уровень нелинейных искажений н малые габариты катушек. Однако конструирование катушек с магнитными сердечниками связано с применением специальных материалов, поэтому до настоящею времени многие разработчики применяют катушки с воздушными сердечниками, основные недостатки которых — большие габариты при условии малых потерь (особенно в фильтре низкочастотного канала), а также большой расход меди достоинства — пренебрежимо малые нелинейные искажения.  [c.92]


Связи - это зсранее заданные, не вытекающие из динамических уравнений движения ограничения, налагаемые на положения, скорости иуаюрения точек механической системы. Связи реализуются материально посредством нитей, стержней, подшипников, подпятников, стволов, пазов, л фт, поверхностей тел и т.п. Аналитически связи выражаются уравнениями, связывающими координаты материальных точек, их скорости и время. Тела, осуществляющие связи, действуют на точки системы с определенными силами, которые называются реакциями связей или пассивными силами.  [c.130]

Аналогичные обстоятельства имеют место и для любой системы S, находящейся под действием двусторонних связей, не только кинематических, но также и динамических. Сервомоторные силы Фисами по себе, как предназначенные для осуществления связей, принадлежат к классу реакций связей, в постановке же задачи о движении они должны быть причислены к прямо приложенным силам (аналогично tomj , как это делается в случае пассивных сопротивлений и трения). Таким образом, мы должны рассматривать систему как подчиненную только обычным связям (геометрическим и кинематическим) и движущуюся под действием всех активных сил F и сервомоторных сил Ф-. Следовательно, общее уравнение  [c.319]

Активные системы стабилизации скорости, в отличие от пассивных систем, используются для уменьшения динамических ошибок, вызываемых сравпительпо медленными низкочастотными возмущениями. Пассивные системы (маховик, динамический гаситель) реагируют на ускорение в точке наблюдения поэтому они нечувствительны к статической ошибке угловой скорости, т. е. к постоянному по величине отклопению от номинального значения. Активные системы с тахометрической обратной связью снижают величину статической ошибки. Так, например, для машины с жесткими звеньями получаем из формулы (6.27)  [c.117]

Во всех этих тепловых схемах основным элементом служат энергетические ГТУ, от режима работы которых зависят характеристики всей ПГУ. Остальные элементы (котлы-утилизаторы, паротурбинные и деаэраторно-питательные установки и др.) являются пассивными элементами. Их работа определяется количеством и параметрами выходных газов ГТУ, ее мощностью и экономичностью в зависимости от нагрузки и характеристик окружающего воздуха. Это не означает, что, например, состояние и параметры проточной части ПТ, конденсатора, эжекторных и других установок не влияют на паропроизводитель-ность, температуру и давление генерируемого в КУ пара. Существуют весьма сложные технологические связи, которые необходимо анализировать не только в отдельных статических режимах работы, но и в динамике. На базе математического и программного обеспечения создают всережимные логико-динамические математические модели ПГУ с КУ. Такой опыт имеют ряд фирм в России и за рубежом и, в частности, АО Фирма ОРГРЭС .  [c.359]

Возможность выбора коэф( )ициентов усиления йу и в широких пределах (по Сравнению с ограниченными пределами для массы и жесткости пассивных систем) позволяет получить достаточно низкие собственные частоты виброзащитных систем. Поскольку масса Л4 не фигурирует в уравнениях движения, рабочие характеристики не зависят от массы изолируемого объекта. Однако при низких собственных частотах активные виброзащитиые системы обладают большими динамическими отклонениями при ударном возбуждении. Избавиться от этой трудности позволяет введение обратной связи по интегралу от относительного перемещения. Передаточные функции виброзащитной системы с обратной связью по интегралу от относительного перемещения также приведены в таблице.  [c.253]

Иногда применяются методы пассивной изоляции вибраций, включая такие, как нежесткое крепление несущего винта и редуктора к фюзеляжу. Однако для шарнирных и нежестких в плоскости вращения бесшарнирных винтов необходимость устранить земной резонанс диктует жесткое крепление. Можно использовать и динамическую изоляцию вибраций во вращающейся или в невращающейся системе координат путем размещения между лопастями и фюзеляжем системы из массы и пружины. Подобный изолятор настраивается таким образом, что вибрации на какой-либо одной частоте, обычно NQ., значительно ослабляются. При этом энергия нагрузок у комля лопасти на соответствующей частоте передается на изолятор и не преобразуется в движение фюзеляжа. Возможно использовать саму лопасть в качестве виброизолятора такого типа, хотя проще спроектировать для этого специальное устройство. Например, для лопасти с низкой жесткостью на кручение можно связать первый тон изгиба в плоскости взмаха с крутильными колебаниями для снижения вибрационных нагрузок у комля. Часто для снижения вибраций используют крепление несущего винта к фюзеляжу в узлах (точках, где отсутствуют перемещения) основных тонов последнего.  [c.639]


Большое влияние на толщину покрытия оказывают условия протекания процесса резания. С одной стороны, толстое покрытие заметно повышает износостойкость инструментальной матрицы за счет роста твердости, температурной устойчивости против окисления и коррозии, роста пассивности инструментального материала против твердофазных и жидкофазиых диффузионных реакций с обрабатываемым материалом, снижения граничной адгезии. С другой стороны, рост толщины покрытия приводит к заметному увеличению количества дефектов в объеме покрытия, причем таких опасных дефектов, как макро- и микропоры, микротрещины, несте-хиометрпя состава, неоднородность зерна и рост его размера по сечению покрытия по мере удаления от матрицы и т. д. Таким образом, с увеличением толщины покрытия резко возрастает вероятность появления опасного дефекта, который может привести к динамическому разрушению покрытия. Отсюда и связь оптимальной толщины покрытия с условиями протекания процесса резания.  [c.42]

Физические поля и различные виды энергии проявляют свойства, подобные свойствам, которые характеризует масса. Потребовалась детализация определения массы масса покоя ( собственная масса ), релятивистская , продольная , поперечная , электромагнитная , топологическая , нулевая , отрицательная , масса античастиц , масса, эквивалентная энергии , масса полевая , активная гравитационная , пассивная гравитационная , универсальная элементарная , масса динамической системы , масса, невыделимая из полной массы... , массэргия и т.д. (см. [134], [78], [100]). Приведённый спектр применения понятия массы (или непризнания какого-либо из перечисленных понятий) показывает, что принцип инерции или, в более общем виде, концепция инерционности ещё не сформировались. Детализация в определениях потребовалась в связи с изучением взаимодействий тел, полей и ограничения в виде выделенной в природе скорости движения, равной скорости света в вакууме и играющей особую роль в электромагнитных и других явлениях.  [c.238]


Смотреть страницы где упоминается термин Связи динамические пассивные : [c.344]    [c.305]    [c.306]    [c.80]   
Теория механизмов и машин (1973) -- [ c.53 , c.55 ]



ПОИСК



Пассивность

Связь динамическая

Связь пассивная



© 2025 Mash-xxl.info Реклама на сайте