Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь аустенитная классификация

Классификация 9 Хромоникелевые стали — Диаграммы состояния тронные 29 — Диаграммы структурные 31, 32 — Коррозионная стойкость 33, 34 — Механические свойства — Зависимость от влияющих факторов 30, 31 — Структура и склонность к охрупчиванию 32 Хромоникелевые стали аустенитные и аустенитно-ферритные 9, 22—28  [c.444]

Классификация легированных сталей по микроструктуре несколько условна. Характерные для какого-либо класса структуры получаются в результате различных режимов термической обработки. Стали ферритного, перлитного и мартенситного классов названы по микроструктурам, получаемым при охлаждении на воздухе — нормализации. Стали аустенитного класса получают характерную структуру аустенита после нагрева до температур около 1000—1100° С и резкого охлаждения — аустенизации. И, наконец, стали ледебуритного класса получают характерную микроструктуру с участками ледебурита в результате очень медленного охлаждения литых деталей — отжига.  [c.164]


Приведены результаты исследований кислородно-флюсовой резки сталей аустенитного и мартенситного классов и дача классификация сталей и сплавов по их способности подвергаться резке. В книге описана современная аппаратура для кислородно-флюсовой резки, применяемая в Советском Союзе и за рубежом, рассмотрены основные вопросы по технике безопасности при кислородно-флюсовой резке.  [c.2]

Классификация легированных сталей по микроструктуре несколько условна. Характерные для конкретного класса структуры получаются в результате различных режимов термической обработки. Стали ферритного, перлитного и мартенситного классов названы по микроструктурам, получаемым при охлаждении на воздухе (нормализации). Стали аустенитного класса  [c.65]

АУСТЕНИТНЫЕ НЕРЖАВЕЮЩИЕ СТАЛИ 1. Классификация и обозначения высоколегированных сталей  [c.5]

Отмечаем, что рассмотренная классификация условна и относится к случаю охлаждения на воздухе образцов относительно небольших размеров. Меняя условия охлаждения, можно получать и разные структуры. Так, при закалке перлитной стали может быть получена мартенситная структура, а при медленном охлаждении сталь мартенситного класса испытывает превращение в перлитной области. Охлаждение аустенитной стали ниже нуля может вызвать в ней мартенситное превращение.  [c.362]

Классификация по структуре после нормализации предполагает разделение сталей на три основных класса перлитный, мартенситный и аустенитный (см. рис. 7.6). Такое подразделение обусловлено тем, что с увеличением содержания легирующих элементов в стали возрастает устойчивость аустенита в перлитной области (это проявляется в смещении вправо С-образных кривых) одновременно снижается температурная область мартенситного превращения. Все это приводит к изменению получаемых при  [c.154]

Однако такая связь между структурой и химическим составом стали далеко неоднозначна. Наряду с перечисленными могут быть смешанные классы ферритно-мартенситный, аустенитно-феррит-ный, аустенитно-мартенситный. Такую классификацию применяют при наличии в структуре объемной доли второй структурной составляющей не менее 10 %.  [c.73]

Структурный класс аустенитных и ферритных сталей совпадает по классификации как в отожженном, так и нормализованном состояниях.  [c.239]

В данной главе дается классификация сталей и сплавов тех типов, которые рассматриваются в справочнике, отмечаются особенности их структуры, влияние на характеристики разных факторов. Раздельно обсуждаются свойства сплавов на железной основе — сталей перлитного и ферритного классов, претерпевающих полиморфные превращения при нагреве и охлаждении аустенитных сплавов на железной и никелевой основе сплавов цветных металлов — титана, алюминия, меди, циркония.  [c.41]


При классификации по назначению, т. е. по применению, легированные стали разделяют на три группы 1) конструкционные 2) инструментальные и 3) стали специального назначения (с особыми физическими и химическими свойствами). Сталь конструкционная относится в большинстве случаев к перлитному классу сталь с особыми свойствами — к аустенитному, мар-тенситному или ферритному сталь инструментальная — к перлитному и карбидному.  [c.197]

Классификация по структуре. В зависимости от структуры, получаемой после нормализации, легированные стали делят на пять классов перлитная, мартенситная, аустенитная, ферритная и карбидная (ледебуритная).  [c.146]

Классификация по структуре. По структуре легированная сталь разделяется на классы ферритный, перлитный, мартенситный, аустенитный и карбидный. Эта классификация не является основной, но все же в металловедении ее терминология применяется довольно часто.  [c.296]

Наиболее распространенными легированными конструкционными сталями являются стали перлитного класса (по структурной классификации в нормализованном состоянии), и очень ограниченное распространение имеют стали мартенситного и аустенитного классов.  [c.283]

Электроды ЦТ-1 предназначены для сварки аустенитных сталей типа ЭИ-69 и по принятой классификации относятся к группе 1 и 2а. Наплавленный металл обладает высокой устойчивостью против горячих трещин, что обеспечивается необходимым содержанием феррита. Термическая обработка (стабилизация) не рекомендуется.  [c.56]

В отожженном состоянии структуры легированных сталей определяют непосредственно по диаграммам состояния. Во втором случае структуру легированных сталей определяют после нормализации при температуре 900° С. По этой, более распространенной, классификации стали разделяются на следующие классы перлитный, мартен-ситный, аустенитный, карбидный и ферритный.  [c.85]

Жаропрочные стали. Методы определения механических свойств при высоких температурах. Характеристики жаропрочности стали. Пути повышения жаропрочности. Классификация жаропрочных сталей перлитные, мартенсит-ные, аустенитные с карбидным и интерметаллидным упрочнением. Жаропрочные сплавы.  [c.9]

Аустенитные стали. Аустенитные стали, применяемые в качестве жаропрочных материалов, являются железохромоникелевыми или железохромоникельмарганцовыми сплавами, легированными тем или иным количеством других элементов. Существует целый ряд классификаций аустенитных сталей. Наиболее удобной применительно к материалам деталей ГТУ является разделение на четыре группы.  [c.47]

В зависимости от структуры различают три основных класса нержавеющих сталей. Каждый класс включает ряд сплавов, которые несколько различаются по составу, но обладают сходными физическими, магнитными и коррозионными свойствами. Здесь приводятся обозначения сталей в соответствии с классификацией Американского института железа и стали (AISI), которую часто используют на практике. Перечень основных марок нержавеющих сталей, выпускаемых промышленностью, представлен в табл. 18.2. Основными классами нержавеющих сталей являются мартенситный, ферритный и аустенитный.  [c.296]

Например, полная классификация стали 08Х18Н10Т стать хромоникелевая, высоколегированная, аустенитного класса, конструкционная, коррозионностойкая, жаростойкая. Содержит < 0,08% С, < 0,8% 81, < 2,0% Мп, (17...19)% Сг, (9...11)% №, (0,4. 0,7)% Т , < 0,02% 3, < 0,035% Р, < 0 3% Сг.  [c.90]

При классификации стали по структуре учитывают особенности ее строения в отожженном и нормализованном состояниях. По структуре в отожженном (равновесном) состоянии конструкционные стали разделяют на четыре класса доэвтек-тоидные, имеющие в структуре избыточный феррит эвтектоидные, структура которых состоит из перлита аустенитные и ферритные.  [c.19]

Классификация по структуре отличается некоторой условностью. Структурный класс ферритной, перлитной и мартенситной стали определяется той основной структурой, которую легированная сталь получает после охлаждения на воздухе, т. е. нормализации. Структурный класс аустенитной стали устанавливается по основной структуре после быстрого охлаждения, т. е. после закалки. Структурный класс ледебуритной стали определяется после медленного охлаждения, т. е. отжига, по наличию в структуре эвтектики-ледебурита, который может быть раздроблен при горячей прокатке или kobj на отдельные карбиды.  [c.324]


При написании 2-го издания книги Сварка хромоникелевых аустенитных сталей и сплавов автору пришлось значительное место уделить не только чисто сварочным проблемам, но и рассмотрению общих вопросов металловедения аустенитных сталей. В настоящее время представляется возможным ограничиться лишь кратким изложением вопросов, касающихся состава, структуры и свойств собственно жаропрочных сталей и сплавов. Вопросы теории жаропрочности в данной книге не рассматриваются, они достаточно подробно изложены в работах [1, 2, 3, 8, 11, 14, 18, 22, 24, 27] и многих других. К сожалению, пока еще нет общепринятой классификации жаропрочных аустенитных сталей и сплавов. Деление их на отдельные группы, в зависимости от химического состава, зачастую является чисто условным. По-видимому, более точным следует признать группирование сталей и сплавов по типу упрочнения твердого раствора карбидное, карбонитридное, кар-боборидное, интерметаллидное.  [c.8]

По равновесной структуре, т.е. по структуре после медленного охлаждения (отжига), различают доэвтекто-идную, эвтектоидную, заэвтектоидную и ледебуритную стали. Структура доэвтектоидной стали состоит из легированного перлита и легированного феррита. Эвтектоид-ная сталь имеет перлитную структуру. В заэвтектоидной стали кроме перлита имеются избыточные (вторичные) карбиды. В структуре ледебуритной стали имеются первичные карбиды, которые выделились из жидкого сплава. Следует отметить, что границы между этими сталями по содержанию углерода не соответствуют диаграмме Fe-Feg (0,8 и 2,14 % С), так как легирующие элементы сдвигают точки S и Е диаграммы влево. По этой причине в классификации появились ледебуритные стали. Как уже говорилось ранее, при большом содержании легирующих элементов возможно получение сталей, имеющих в равновесном состоянии ферритную или аустенитную структуру. Поэтому классификация должна быть дополнена ферритными и аустенитньши сталями.  [c.156]

Другим условным структурным признаком, по которому классифицируют стали, является основная структура, по лученная при охлаждении на воздухе образцов не( льших сечений после высокотемпературного нагрева ( 900°С) При этом в зависимости от структуры стали подразделяют на перлитные, бейнитные, мартенситные, ледебуритные, ферритные и аустенитные Перлитные и бейнитные стали чаще всего бывают угле родистыми и низколегированными, мартенситные — легиро ванными и высоколегированными, а ферритные и аустенит ные, как правило, высоколегированные Однако такая связь между структурой и легированностью стали далеко неод позначна Наряду с перечисленными могут быть смешан ные структурные классы феррито перлитный, фер рито мартенситный, аустенито ферритный, аустенито мартенситный Такая классификация применяется при наличии не менее 10 % феррита (как вто рой структуры)  [c.15]

В связи с этим вначале целесообразно с помощью специального классификатора (рис. 1) установить вид термической обработки, а затем назначить режим (температуру иагрева, выдержку, охлаждение и т. д.), воспользовавшись соответствующим разделом настоящей работы. Например, при проектировании аппарата простой формы, без резких переходов сечения из стабилизированной аустенитной стали, не содержащей молибден, исходя из условий эксплуатации необходимо обеспечить для аппарата высокую стойкость против коррозионного растрескивания, т. е. провести термическую обработку для снятия напряжений. По приведенной классификации (рис. 1) конструктор устанавливает, что этой цели лучше всего удовлетворяет стабилизирующий отжиг режим отжига приведен ниже (см. стр. 669). Это же самое требование для изделия сложной формы может быть удовлетворено при нспользованни ступенчатой термической обработки по режиму, указанному иа стр. 670.  [c.666]

Аустенитные стали, применяемые в качеств жаропрочных материалов, являются Fe—Сг— Ni или Fe—Сг—j Ni—Mn сплавами, легированными добавками других элементом Существует ряд классификаций аустенитных сталей, среди котси рых, по-видимому, наиболее удобно их разделение на следующий три группы.  [c.48]

Классификация легированной стали по структуре, получаемой при охлаждении ее на воздухе, предложена в связи с влиянием легирующих элементов и углерода на закаливаемость стали. При небольшом содержании легирующих элементов получаются перлитообразные структуры (перлит, сорбит, троостит). По мере увеличения количества легирующих элементов получается сталь с мартенситной, а иногда с аустенитной или ферритной структурой. Все легирующие элементы способны растворяться как в а-, так и в у-железе. Многие из них образуют с углеродом прочные карбиды, например СгуСз, Т1С и др. Стали, легированные карбидообразующими элементами (Сг, Мп, Мо, V, И), относятся к карбидному классу.  [c.196]

Классификация легированных сталей по микроструктуре, получаемой после нормализации, является также очень важной их характеристикой. В зависимости от структуры, получаемой после нормализации, стали относят к одному из следующих пяти классов перлитному, мартенситному, карбидному (иногда называемому леде-буритным), ферритному и аустенитному.  [c.216]

На этих принципах и построена классификация стали по структуре, получаемой при охлаждении на воздухе, предложенная французским ученым Гийе. По этой классификации сталь разделяют на три основных класса аустенитный, мартенситный и перлитный. Для определения принадлежности стали к тому или иному классу ее в виде образцов толщиной 15—20 мм нагревают до состояния аустенита и затем охлаждают на воздухе. Если испытуемая сталь приобретает структуру аустенита или мартенсита, ее соответственно относят к аустенитному или мар-тенситному классу. К перлитному классу по этой классификации относят условно сталь, которая в результате охлаждения на воздухе испытывает любое диффузионное превращение аустенита, т. е. приобретает структуру перлита, сорбита или троостита-закалки.  [c.293]

При высоком содержании легирующих элементов, расширяющих область 7-фазы (Мп, N1 и др.), последняя может почти или полностью сохраниться. Такие стали называются полуаустенитными или аусте-нитными. В указанной классификации для стали, легированной элементом, расширяющим 7-фазу, будут следующие пять классов доэвтектоидный, заэвтектоидный, ледебуритный, аустенитный и полуаустенитный (фиг. 233).  [c.280]


Электроды КТИ-7 предназначены для сварки стабильпо-аустенитной стали типа Х15Н35 (ЭИ-612), работающей при температуре 660°, и отпосятся к группе 46 по принятой выше классификации. Наплавленный металл устойчив против межкристаллитной коррозии. Предел длительной прочности за 100 ООО час. условного испытания при температуре 650° составляет 15 кПмм .  [c.56]

Классификация по структуре, пол]гчаемой при охлаждении на воздухе. Эта классификация основана на повышении закаливаемости стали По мере увеличения содержания в ней легирующих элементов. При одной и той же скорости охлаждения на воздухе получаются различные структуры от перлитной до аустенитной и ферритной.  [c.8]

Разнообразные требования, предъявляемые к нержавеющим сталям, привели к их интенсивному совершенствованию. Наряду с разработкой новых сплавов видоизменялись, иногда неоднократно, и традиционные стали. Эти изменения вносили с целью усовершенствования производства и внедрения новых методов. В результате появились многочисленные технические условия и патенты, назначение которых не всегда сразу понятно. Положение резко изменилось после принятия новых Британских стандартов, охватывающих основную номенклатуру используемых сталей. К ним относят В5 970 часть 4 1970 (болванки, заготовки, прутки, поковки и сортовой прокат), а также В5 1449 часть 4 1967 (плиты, листы, лента). Эти технические условия приведены в табл. 1.6—1.8 классификация сталей основана иа их структуре (мартенситиая, ферритная или аустенитная), определяющей основные физические свойства. Приведены данные лишь по тем легирующим элементам, которые наиболее важны. Другие элементы присутствуют либо как случайные примеси, либо как добавки, необходимые при производстве стали (например, кремний и марганец добавляют как раскислители), и существенного влияния на свойства стали не оказывают.  [c.23]

Аустенитные жаропрочные стали представлены в технике большим числом марок, и классификация их по одному какому-либо признаку вряд ли возможна. Общим для всех этих сталей является сохранение в условиях высокотемпературной службы устойчивой аустенитной структуры, упрочненной дисперсными выделениями различных фаз. Такая структура в большинстве аустенитных жаропрочных сталей образуется в результате специальной термической обработки, основанной на процессах старения пересыщенных твердых растворов в связи с переменной (с температурой) растворимостью в них карбидов, карбонитри-дов или интерметалличесюих соединений.  [c.846]

Классификация по структуре. Стали по структуре классифицируют в состояниях после отжига и нормализации (см. гл. IV). В отожженном (равновесному состоянии надоэв-тектоидные, имеющие в структуре избыточный феррит эвтектоидные, структура которых состоит из перлита заэвтектоидные, в структуре которых имеются вторичные карбиды, выделяющиеся из аустенита ледебу-ритные, в структуре которых содержатся первичные (эвтектические) карбиды аустенитные ферритные.  [c.45]


Смотреть страницы где упоминается термин Сталь аустенитная классификация : [c.244]    [c.161]    [c.164]    [c.181]    [c.244]    [c.216]    [c.606]    [c.180]   
Справочник по специальным работам (1962) -- [ c.170 , c.176 ]



ПОИСК



Классификация и обозначения высоколегированных сталей — Аустенитные стали

Сталь Классификация

Сталь аустенитная



© 2025 Mash-xxl.info Реклама на сайте