Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кармана Силы критические

Вторая основная задача связана с исследованием динамической устойчивости стержней в потоке и определением критических скоростей потока. Комплексные собственные значения позволяют выяснить возможное поведение стержня при возникающих свободных колебаниях во всем диапазоне скоростей потока (от нуля до критического значения) и тем самым ответить на вопрос, какая потеря устойчивости (с ростом скорости потока) наступит, статическая (дивергенция) или динамическая (флаттер). Задачи динамической неустойчивости типа флаттера подразумевают потенциальное (без срывов) обтекание стержня (рис. 8.1,а), что имеет место только в определенном диапазоне чисел Рейнольдса. Возможны и режимы обтекания с отрывом потока и образованием за стержнем вихревой дорожки Кармана (рис. 8.1,6). Вихри срываются попеременно с поверхности стержня, резко изменяя распределение давления, действующего на стержень, что приводит к появлению периодической силы (силы Кармана), перпендикулярной направлению вектора скорости потока.  [c.234]


Это критическая сила Ясинского — Кармана. Для полного ее определения необходимо найти положение оси аа, для чего используют условие (15.43) и необходимо знание диаграммы а — е, так как величина Et зависит от Для прямоугольного  [c.360]

Из графиков видно, что в наибольшей мере внезапность появления прогибов наблюдалась в опытах Т. Кармана, которые следует отнести к числу наиболее тщательно поставленных. При тщательной постановке опытов разница в значениях критической силы, определенных теоретически и экспериментально, в области, где справедлива формула Эйлера, может не превосходить 1%.  [c.371]

При обтекании тела вязким потоком за ним образуются вихри. Они за счет энергии потока постепенно увеличиваются в размере и по достижении определенной (критической) величины отрываются от тела. При достаточно больших числах Re (10 - -10 ) вихри отрываются поочередно с двух сторон от тела и образуется регулярная вихревая дорожка Кармана [104]. При отрыве вихря на теле возникает импульс силы, который приводит к образованию вибрации и шума.  [c.168]

Критическая сила Ясинского — Кармана. Как отмечено ранее, при X < расчет на устойчивость в пределах пропорциональности теряет силу, так как в этом случае сжимающая сила еще до потери устойчивости вызывает в стержне пластические деформации, которые накладывают свой отпечаток на сам процесс потери устойчивости, на процесс перехода из прямолинейного состояния в изогнутое. Решение задачи за пределом пропорциональности существенно различно для случаев постоянной (неизменной) и меняющейся (возрастающей или убывающей) в процессе потери устойчивости сжимающей силы. Критическая сила, по Ясинскому — Карману, ищется в предположении F = onst. Предположим, что деформации в прямолинейном сжатом стержне вышли за предел пропорциональности и при значении силы F = наряду с исходной прямолинейной формой равновесия появилась возможность существования сколь угодно близкой к прямолинейной форме искривленной формы равновесия. Отметим, что согласно данным экспериментов над материалами за пределом пропорциональности увеличение нагрузки дает активный процесс и изображающая точка А состояния  [c.357]

Постановка вопроса вполне резонная, пригодная как при упругих деформациях, так и при пластических. Но при чисто упругой постановке введение возмущений на сжатие и растяжение ничего не меняет. Критическая сила остается неизменной. А при пластических деформациях картина становится иной. И это легко понять. Представьте себе, что в дополнение к изгибной деформации стержню сообщено еще и малое осевое сжатие. Тогда в поперечных сечениях стержня произойдет смещение областей разгрузки и догрузки, а при неблагоприятном сочетании двух типов возмущений зона разгрузки вообще может исчезнуть. Это означает, что стержень на устойчивость следует считать уже не по приведенному модулю Энгессера — Кармана, а по касательному Е. Выходит, что критическая сила в зависимости от обстоятельств может проявить себя в интервале двух крайних значений — одного, определяемого по приведенному модулю, и второго — по касательному. Из этих двух следует выбрать, конечно, наименьшее и рассчитывать сжатый стержень на устойчивость надо по касательному модулю.  [c.156]


В реальных условиях практические расчеты по касательному и по приведенному модулям мало чем отличаются один от другого. При подходе к пределу текучести, и за ним, касательный модуль Е неизмеримо меньше номинального модуля упругости Е. А раз так, то приведенный модуль Энгессера — Кармана по порядку величины близок к касательному, а критическая сила падает до столь низкого значения, что конструкция фактически не может воспринимать осевой сжимающей нагрузки. Поэтому стержни, сжатые до предела текучести, в качестве несущих элементов практически и не используются.  [c.156]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

История определения критической силы для сжатого стержня берет начало от работ Г Эйлера. Определенная им критическая сила кр.з была подвергнута экспериментальной проверке, и было сделано заключение, что она дает сильно завышенные результаты. Однако, как выяснилось позже, ее применяли для случая X < Х,пред.э. что было ошибкой. Когда же стали брать гибкости %, не выводящие материал за пределы пропорциональности, то результаты теории, т. е. значения кр. ) = п Е]х/Р, хорошо согласовались с экспериментом. Теперь встал вопрос об определении теоретическим путем критической силы для случая работы материала -la пределом пропорциональности. В конце XIX в. Энгессером было предложено заменить в формуле Эйлера модуль Е касательным модулем Е(. Это дало хорошее совпадение с экспериментом, но такая замена не была обоснована теоретически. При изучении вопроса появилась мысль о двух зонах деформирования Ах и. 42, которая была высказана Ясинским (1894) и затем Карманом (1910). Формула Ясинского — Кармана хотя и приблизила теоретический результат к эксперим( нту, однако давала стабильно завышенный результат.  [c.360]

Критическая сила Шенли — Энгессера. Шенли в 1946 г. обратил внимание на го, что формула Ясинского — Кармана получена в предположении F = onst, тогда как в реальных условиях чаще в процессе потери устойчивости имеет место рост нагрузки. Предположив, что критическое значениг сжимающей силы соответствует началу потери устойчивости, а в процессе потери устойчивости сжимающая сила возрастает на Af, Шенли пришел к выводу, что по всему поперечному сечению должно быть догружение и всюду  [c.361]


Эта зависимость аналогична зависимости в случае соблюдения закона Гука, с той лищь разницей, что вместо модуля упругости Е = Еа входит величина Ег, которую называют приведенным модулем упругости Энгессера — Кармана. Таким образом, по Энгессеру—Карману определение критической силы и критических напряжений может производиться по формулам, выведенным для материала, подчиняющегося закону Гука, с заменой в этих формулах модуля упругости материала на приведенный модуль упругости  [c.369]

При определении критической силы стержней из упрочняющихся материалов, диаграмма деформирования которых приведена на рис. 8, учитывают, что если при постоянном значении сжимающей силы Р произойдет случайное искривление оси стержня, то волокна у вогнутой (сжатой) стороны догрузятся по закону А Од = = кАбд, где Ел — 12 1 — касательный модуль, зависящий от положения точки на кривой деформирования, а волокна у выпуклой стороны — упруго разгрузятся по Закону А0р = ЕДВр. В этих условиях жесткость сечения стержня на изгиб определяют с помощью приведенного модуля р (модуля Кармана) из соотношения  [c.409]

При помощи теории пограничного слоя можно также объяснить явление срыва потока с поверхности тела и образование вихрей Кармана. В идеальной жидкости протекающие над и под телом потоки сиова соединяются позади тела, образуя и а его поверхности критическую точку 5 (фиг. 65). От Л до 5 скорость жидкости уменьшается, а давление возрастает частицы жидкости, двигаясь вдоль поверхности против возрастающего давления, теряют свою кинетическую энергию. Если в пограничном слое, примыкающем к поверхности, действуют также силы вязкости, то частицы жидкости быстрее теряют свою энергию и. Не дойдя до точки 5, придут в состояние покоя появляется обратный поток от 5 к Л, как показано иа фиг. 66. То же явление будет и на нижней поверхности тела. Таким образом появляются две поверхности  [c.86]


Смотреть страницы где упоминается термин Кармана Силы критические : [c.147]    [c.316]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.82 , c.84 ]



ПОИСК



Кармана

Сила критическая

Силы Кармана



© 2025 Mash-xxl.info Реклама на сайте