Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни сжатые — Напряжения критические

Полученные формулы справедливы только в пределах действия закона Гука, т. е. для сравнительно тонких и длинных стержней, у которых напряжение сжатия при критических нагрузках оказывается меньше предела пропорциональности. Для коротких и жестких стержней критическая сила будет большей, и в них возникают пластические деформации еще В стадии простого сжатия, т. е. до потери устойчивости. Формула Эйлера (13.4) становится неприменимой, когда а,,р достигает  [c.148]


Теоретическое решение, полученное Эйлером, оказалось применимым на практике лишь для очень ограниченной категории стержней, а именно, тонких и длинных, с большой гибкостью. Между тем в конструкциях очень часто встречаются стержни с малой гибкостью. Попытки использовать формулу Эйлера для вычисления критических напряжений и проверки устойчивости при малых гибкостях вели иногда к весьма серьезным катастрофам, да и опыты над сжатием стержней показывают, что при критических напряжениях, больших предела пропорциональности, действительные критические силы значительно ниже определенных по формуле Эйлера.  [c.460]

Отсюда мы видим, что непосредственно сжимающее напряжение в стержне, в том случае, когда он остается прямым, вплоть до момента, при котором осевая сила сжатия становится равной критической, будет  [c.577]

Напряжения критические — см. под наименованиями объектов, например Пластинки круглые — Напряжения критические Стержни сжатые — Напряжения критические Нелинейные колебания — Исследования — Методы 538—540  [c.554]

Во избежание потери устойчивости в стержнях, работающих на сжатие, доводить напряжения до критического значения недопустимо. Сжатый стержень будет устой-  [c.272]

Можно считать, что центрально сжатые стержни теряют свою несущую способность от потери устойчивости раньше, чем от потери прочности, так как критическое напряжение всегда меньше предела текучести или предела прочности  [c.512]

Даже при незначительном превышении сжимающей силой ее критического значения в стержне возникают большие прогибы и высокие напряжения — практически стержень выходит из строя. Таким образом, с точки зрения практических расчетов сжатых стержней критическая сила должна рассматриваться как разрушаюш,ая нагрузка.  [c.312]

При некотором значении гибкости, которое можно обозначить через Яр, величина критических напряжений становится равной предельному напряжению сжатия (либо пределу текучести, либо пределу прочности). Это значение гибкости будет границей применимости формулы Ясинского. Таким образом, критические напряжения вычисляют по формуле Ясинского тогда, когда гибкость стержня меньше Я р д, но не ниже Яр.  [c.343]

Таким образом, кривая Гриффитса (12.34) определяет момент возникновения неустойчивости в равновесии трещины, когда любая случайная вариация напряжений или длины трещины вызывает прогрессирующий рост трещины. Отсюда и название — критический коэффициент интенсивности напряжений, поскольку достижение значения Kj = знаменует потерю устойчивости равновесия системы (аналогично термину критическая сила для сжатого стержня, теряющего устойчивость).  [c.386]


Поперечные сечения сжатых стержней должны назначаться не из условия прочности от чистого сжатия, а из условия того, чтобы сжимающие напряжения были меньше критических напряжений  [c.42]

Прямолинейная форма равновесия сжатого стержня устойчива до достижения сжимающей силой так называемого критического значения (Якр). Стержень, потерявший устойчивость, работает на совместное действие изгиба и сжатия. Даже незначительное превышение сжимающей силой критического значения связано с появлением весьма значительных прогибов стержня, а следовательно, больших изгибающих моментов и напряжений. Практически потеря устойчивости означает выход конструкции из строя, даже если это и не сопровождается разрушением (изломом) стержня.  [c.241]

Величина критического напряжения Окр играет такую же роль, как предел прочности ов при расчетах на прочность. Нельзя допускать, чтобы в сжатых стойках возникали напряжения, равные критическим. Поэтому необходимо от критических напряжений, определяемых при большой гибкости по формуле Эйлера, а при малой — по формуле Ясинского — Тетмайера, перейти к допускаемым напряжениям при продольном изгибе. Для этого критическое напряжение делится на коэффициент запаса устойчивости к, который для металлов равен 1,86 для дерева — 2,5 и более. Этот коэффициент учитывает не только запас устойчивости, но и возможный эксцентриситет приложения нагрузки, небольшое начальное искривление стержня, неоднородность материала и др.  [c.298]

Задачи 710—715. Определить величины критических сил Р р и критических напряжений о р для сжатых стержней.  [c.256]

Критическое напряжение для центрально сжатых стержней средней и большой гибкости представляет, пожалуй, большую опасность, чем предел текучести для пластичных материалов или предел прочности для хрупких материалов при простом растяжении. Очевидно, что при практическом решении вопроса об устойчивости стержня нельзя допустить возникновения в нем критического напряжения, а следует принять соответствующий запас устойчивости.  [c.573]

Произведение л/ называют приведенной длиной. Критическое напряжение, т. е. напряжение, возникающее в поперечном сечении сжатого стержня при критической, нагрузке,  [c.330]

Нормальное напряжение в поперечном сечении сжатого стержня, соответствующее критическому значению сжимающей силы, также называется критическим.  [c.126]

Предел применимости формулы Эйлера. Перейдем от критической эйлеровой силы к напряжению а, вызываемому ею в сжатом стержне  [c.343]

Известны два исключения, при которых нарушается приведенная общая оценка значений критических деформаций. Это тела с резко выраженной анизотропией упругих свойств и тонкостенные тела (стержни, пластины, оболочки). На рис. 2.4 изображен параллелепипед из анизотропного материала, равномерно сжатый вдоль оси х. Начальное напряжен-  [c.54]

Для увеличения изгибной жесткости тонкостенных элементов конструкций широко используют трехслойные пластины, панели и оболочки. В них два несущих тонких слоя из высокопрочного и жесткого материала (металл, стеклопластик, боро- или углепластик и т. д.) разделены толстым слоем значительно более легкого и менее прочного заполнителя (пенопласт, соты, гофры и т. д.). Внешние нагрузки воспринимаются в основном за счет напряжений в несущих высокопрочных слоях. Роль заполнителя сводится к обеспечению совместной работы всего пакета при поперечном изгибе. Основные особенности расчета на устойчивость таких элементов конструкций выявляются при рассмотрении простейшего примера определения критических нагрузок сжатого трехслойного стержня.  [c.113]

Ов и относительное укорочение h. Скорость испытаний на сжатие устанавливают в тех же пределах, что и при испытаниях на растяжение. При сжатии предельной силой проводят испытания иа устойчивость тонкостенных элементов — стоек, профилей, труб и т. п. Испытания проводят при однократном и длительном сжатии до разрушения (потери устойчивости) пли до достижения определенной степени деформации. В момент выпучивания стержня, когда прогиб растет без заметного увеличения нагрузки, определяют критическое напряжение потери устойчивости стержня Onp=Pnp/f, где Рцр — критическая сила F — площадь поперечного сечения стержня.  [c.10]


Для тонких стержней, работающих на сжатие, необходимо проверять величину критического напряжения на пределе устойчивости.  [c.112]

Опишем организацию экспериментальных работ по определению критических напряжений. Пусть имеется довольно большое количество стержней различной длины, имеющих одно и то же сечение и закрепленных одинаковым образом (рис. 15.11а). Подсчитаем для каждого из них критическое напряжение по фор- рис. 15.11 муле (15.21) и по этим данным построим гиперболу Эйлера (рис. 15.11 б). Затем для каждого из них экспериментально определим критическое напряжение и по этим результатам построим экспериментальную кривую. Она помечена крестиками там же на рис. 15.116. Из сравнения двух этих кривых устанавливают, что при больших гибкостях (при А > А ) теоретическая и опытная кривые совпадают. При малых гибкостях экспериментально найденное значение а г приближается либо к пределу текучести (Ту (для пластичных материалов), либо к пределу прочности на сжатие аи,с (для хрупких материалов). Расхождения между теоретическими и опытными значениями возрастают по мере приближения гибкости А к нулю и могут быть весьма значительными.  [c.283]

Представим себе, что при сжатии стержня силой Р напряжение достигло значения PIF. Стержень сохраняет прямолинейную форму и напряжения распределены равномерно по сечению. Теперь сообщим системе малое возму-щейие отклоним стержень от положения равновесия. Стержень изгибается, и в его сечениях возникает изгибающий момент EJ/p. Спрашивается, какой модуль следует понимать под Е Обычный модуль или мгновенный модуль Елт=(1а1йг, соответствующий точке А диаграммы Конечно, Ел < И этот мгновенный модуль должен далее войти в выражение эйлеровой критической силы n E J/l . Таким образом, сколь сильно модуль Еа. отличается от модуля Е, столь же сильно реальная критическая сила отличается от той, которую дает схематизированная линейная диаграмма.  [c.447]

При проверке стержней на продольный изгиб мы будем пользоваться таблицей ломающих напряжений, составленной по опытам Л. Тетмайера. Полагая, что критические напряжения при сжатии соответствуют временному сопротивлению материала при простом растяжении, мы выберем допускаемое напряжение при сжатии во столько раз меньшим критического напряжения, во сколько раз допускаемое напряжение при растяжении меньше временного сопротивления разрыву. При выводе основной формулы (6) предположено, что при действии постоянных усилий допускаемое напряжение может быть принято равным 12 кг/жж . Временное сопротивление мостового железа по принятым нормам колеблется от 37 до 42 KzjMM , следовательно, запас прочности при постоянном растягивающем усилии меняется от 3,08 до 3,50. Если мы остановимся на наибольшем коэффициенте безопасности 3,5 и примем его в основание расчета стержней на продольный изгиб, то тогда допускаемое напряжение Ri при сжатии получится делением критического напряжения на 3,5 и мы будем иметь  [c.416]

Силы критические 82, 84 Стержни сжатые центрально двухтавровые дуралюминовые — Кривые критическое напряжение — гибкость — Построение 83—85  [c.564]

При осево.м нагружении стержня в его поперечных сечениях возникают нормальные напряжения сжатия, которые возрастают по. мере увеличения нагрузки. Нормальные напряжения, соответствующие критической силе, называются критическими  [c.254]

И, наконец, стержни малой гибкости, для которых нет надобности в расчете на устойчивость. Для них критическое напряжение считается постоянным и равным для пластичных материалов пределу текучести при сжатии, для хрупких — пределу прочности при сжатии. На диаграм.ме стержням малой гибкости соответствует участок III.  [c.344]

Итак, при малых значениях X (X < 40) стержни из низкоуглеродистой стали рассчитьшают на простое сжатие при средних значениях (40 < X < 100) расчет ведут по формуле Ясинского, а при больших (X > 100) — по формуле Эйлера. График зависимости критического напряжения от гибкости для стержней из низкоуглеродистой стали изображен на рис. 26.3.  [c.292]

Теория устойчивости упругих систем. Достижение нагрузкой величины критической эйлеровой силы может считаться за момент разрушения. Правда, как мы выяснили на примере сжатого стержня и на некоторых упрощенных искусственных примерах ( 4.5), достижение критической силы не всегда означает потерю несущей способностп. Но при Р> э прогибы начинают, как правило, расти чрезвычайно быстро, поэтому практически эйлерову силу можно принимать за разрушающую нагрузку. В отдельных случаях допускается и работа конструкций в после-критической области. В крыле самолета, например, под действием сжимающих напряжений, обшивка в эксплуатационных условиях может терять устойчивость, но силовая конструкция крыла — лонжероны и нервюры — продолжают сохранять несущую способность.  [c.652]

Устойчивость упругого стержня при сжатии определяется по формуле (15.31), в которую входит характеристика сечения J . Из формулы видно, что критическая сила меньше для изгиба в плоскости с минимальной жесткостью. Следовательно, если EJx — минимальная изгибная жесткость, то изгиб произойдет в плоскости Oyz. Так как на практике происходят различного рода отклонения от идеального состояния (эксцентриситет в приложении силы, начальные неправильности в форме, неоднородности самого материала и т. п.), то необходимо ввести коэффициент запаса устойчивости Луст и напряжение а должно удовлетворять условию сг 1 =е [а]у , [oly t = кр/ уст- Таким образом,  [c.352]

Практическая важность угих глав обусловлена необходимостью обеспечения той раиновеснои формы упругой системы (сжатых стержней или иластии, балок на жестких или упругих опорах, цилиндрических оболочек и др.), которая принята конструктором в качестве исходной при расчете соответствующей деформации (сжатия, кручения или изгиба). Превышение так называемых критических, пли эйлеровых, нагрузок, вызванное нарушением расчетной схемы, может привести к аварийным ситуациям и к разрушению корпуса. В связи с этим большое значение приобретает правильное определение критических (эйлеровых) напряжений, позволяющих с учетом необходимого запаса прочности, который, в свою очередь, завпсит от достоверности знания внешней нагрузки, точности расчег-ных формул, уверенности в механических качествах материала и тщательности выполнения конструкции, назначить допускаемые напряжения.  [c.47]


Чтобы сделать метод исследования зримым, Юлиан Александрович сначала решает задачу о сжатии прямого стержня длиною L при наличии первоначальной иогиби /о на участке протяи(енностью с (рис. 9). Критическое напряжение, рассчитываемое в иредположении, что неустойчивость равновесной формы стержня проявляется в пределах упругости, определяется по той же формуле Эйлера, которая отвечает случаю /о = 0, т. е. в отсутствие начальной погпби. При атом наибольший изгибаюш,ий момент.  [c.74]


Смотреть страницы где упоминается термин Стержни сжатые — Напряжения критические : [c.564]    [c.428]    [c.211]    [c.156]    [c.651]    [c.209]    [c.278]    [c.143]    [c.647]    [c.352]    [c.355]    [c.127]    [c.370]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.0 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.0 ]



ПОИСК



Критическое напряжение стержня

Напряжение критическое при

Напряжение критическое при сжатии

Напряжения сжатия

Стержень сжатый

Стержни сжатые внецентренно Напряжения критические 87 Устойчивость — Потеря

Стержни сжатые центрально двухтавривые дуралюмнковые Кривые «критическое напряжение — гибкость» — Построени

Стержни сжатые центрально двухтавривые дуралюмнковые Кривые «критическое напряжение — гибкость» — Построени продольные

Стержни сжатые центрально двухтавривые дуралюмнковые Кривые «критическое напряжение — гибкость» — Построени устойчивые — Исчезновение

Стержни сжатые центрально двухтавровые дуралюминовые Кривые «критическое напряжение— гибкость» — Построени

Стержни сжатые центрально двухтавровые дуралюминовые Кривые «критическое напряжение— гибкость» — Построени продольные

Стержни сжатые центрально двухтавровые дуралюминовые Кривые «критическое напряжение— гибкость» — Построени устойчивые — Исчезновение

Эмпирические формулы для определения критических напряжений. Проверка сжатых стержней на устойчивость



© 2025 Mash-xxl.info Реклама на сайте