Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки вращения ортотропные Уравнения упругости

Рассмотрим многослойную оболочку вращения. Координаты аь 2 направим вдоль меридиана и параллели. Материалы слоев пусть будут ортотропными с осями упругой симметрии, совпадающими с направлениями координатных линий. В этом случае при получении разрешающих уравнений можно пользоваться соотношениями, записанными для амплитудных значений л-й гармоники разложений функции в ряды Фурье по угловой координате 2. Ниже приводятся процедуры получения канонических систем разрешающих дифференциальных уравнений для решения задач статики лмногослойных оболочек вращения общего вида.  [c.216]


Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]

Уточненная теория динамики ортотропной цилиндрической оболочки построена I. Mirsky [S.1351 (1964). Он учитывал поперечные нормальные напряжения, влияние инерции вращения и поперечного сдвига. Применением принципа Гамильтона—Остроградского к уравнениям трехмерной теории упругости получены шесть уравнений движения в напряжениях и перемещениях. Для случая распространения свободных гармонических волн в бесконечной оболочке выведено дисперсионное уравнение, из которого определяются частоты (шесть ветвей) в зависимости от длины волны для изотропных (сталь) и неизотропных (цинк, магний, молибден, вольфрам) материалов при различных толщинах и числах окружных полуволн. Коэффициенты сдвига fe и fee определяются по R. D. Mindlin y [2.1501, зависимость от m и п не учитывается, что дает ошибку не более 10%. Для изотропного материала результаты сравниваются с точными решениями D. С. Gazis a", на основании чего автор полагает, что первые четыре формы колебаний описываются хорошо и это будет справедливо также для ортотропной оболочки.  [c.205]



Прочность устойчивость колебания Том 2 (1968) -- [ c.168 ]



ПОИСК



124 — Уравнение с вращением

213 — Уравнения ортотропная

Оболочки вращения

Оболочки уравнения

Упругие оболочки

Уравнения Уравнения упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте