Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газа ионизация

Имеется отличие в процессе образования плазмы двух- и одноатомного газов. Ионизация двухатомного газа происходит после диссоциации его молекул, например водород диссоциирует на 90% при 4700 К, а азот — при 9000 К (см. рис. 2.60). Их энтальпия при указанных температурах примерно соответствует теплосодержанию аргона при 14 ООО К, а гелия — при 20 ООО К-Таким образом, крутой подъем кривой АН - = f T) в области диссоциации позволяет плазме содержать большие количества теплоты при сравнительно низких температурах.  [c.105]


Представление об электронной природе электрического пробоя дал в 1928 г. выдающийся советский электротехник А. А. Смуров. Оио заключается в следующем. Электроны, освобожденные электрическим полем у катода, перемещаются к аноду. В головной части лидера создается сильное электрическое поле, обусловливающее дальнейшую ионизацию, появление электронного объемного заряда и прорастание лидера к аноду. Внутри лидера имеются положительные ноны и электроны,, так же как и при разряде в газах. Ионизация атомов в этом объеме производится только электронами, ускоренными полем. Ударная ионизация электронами на пути лидера может продолжаться и после прорастания его до анода и завершается проплавлением диэлектрика электронным током.  [c.39]

Рассмотрим случай обтекания тонкого профиля с очень большими числами Маха (М 1) такое обтекание иногда называют гиперзвуковым. Будем продолжать, считать газ однородным, отвлекаясь от тех сложных процессов, которые на самом деле возникают в гиперзвуковых потоках за счет высоких температур, образуюш,ихся при торможении газа на поверхности тела и при прохождении сквозь поверхности сильных разрывов. Будем в настояш,ем параграфе пренебрегать явлениями диссоциации и последующей возможной рекомбинации молекул газа, ионизации газа и некоторыми другими физическими и химическими процессами, характерными для гиперзвуковых движений газа. К некоторым из этих существенных явлений мы вернемся в последней главе курса, где пойдет речь о более близкой к действительности модели газа, обладающего внутренним трением (вязкостью) и теплопроводностью.  [c.247]

Принцип действия ионизационного манометра основан на зависимости от давления тока положительных ионов, образованных в результате ионизации разреженного газа. Ионизация осуществляется электронами, ускоряемыми электрическим или магнитным полями, а также посредством излучения радиоизотопов. При одном и том же количестве электронов, пролетающих через газ, или постоянной мощности излучения степень ионизации газа пропорциональна концентрации его молекул, т. е. измеряемому давлению.  [c.919]

Несмотря на то, что число возбужденных атомов обычно значительно меньше числа атомов, пребывающих в основном состоянии, роль ионизации возбужденных атомов в освобождении электронов не мала, так как соответственно в их ионизации участвуют частицы с меньшими энергиями. В самом деле, число частиц, способных ионизовать невозбужденный атом, пропорционально ехр (—1/кТ), где / — потенциал ионизации. Но число актов ионизации атомов, возбужденных до уровня Е, также пропорционально е и—Е )/кт — первому множителю пропорционально число возбужденных атомов, а второму — число частиц, способных ионизовать возбужденный атом. (Обычно в не слишком плотном газе ионизация происходит при кТ < I, так что 1/кТ > 1 и больцмановский фактор весьма существен). Сравнительная роль ионизации возбужденных и невозбужденных атомов в условиях равновесного возбуждения определяется, главным образом, эффективными сечениями ионизации тех и других при ударах частицами с надпороговой энергией.  [c.326]


У поверхности излучающего электрода происходит интенсивная ионизация газа, сопровождающаяся возникновением коронного разряда. Образующиеся в зоне короны газовые ионы различной полярности движутся под действием сил электрического поля к соответствующим разноименным электродам. Частицы золы, встречая на своем пути ионы, также заряжаются. Основное количество частиц осаждается на развитой поверхности осадительных электродов, меньшая часть попадает на коронирующие  [c.166]

Дуга — мощный стабильный разряд электричества в ионизированной атмосфере газов и паров металла. Ионизация дугового промежутка происходит во время зажигания дуги и непрерывно поддерживается в процессе ее горения. Процесс зажигания дуги в большинстве случаев включает три этапа короткое замыкание электрода на заготовку, отвод электрода на расстояние 3—6 мм и возникновение устойчивого дугового разряда. Короткое замыкание  [c.184]

Ионизация соударением заключается в том, что электроны, движущиеся с большой скоростью, встречаясь е нейтральными атомами газа, ударяются о них, выбивают электроны, ионизируют атомы. Количество энергии, которое необходимо затратить для отрыва электрона от атома, называют работой ионизации eU, величина которой будет различной для разных элементов. Работу ионизации при расчетах необходимой скорости электрона будем принимать равной потенциалу ионизации, выраженному в вольтах.  [c.4]

Температура столба дуги зависит от эффективного потенциала ионизации газов, заполняющих дуговой промежуток, плотности тока в электроде, напряженности поля, полярности и др.  [c.5]

Какие методы применяют для повышения ионизации газа  [c.328]

Ионизации частиц твердого тела при высоких температурах посвящены работы [15, 185, 714], авторы которых использовали аналогию с ионизацией газа. oy [728] изучал взаимодействие между электронами, испускаемыми нагретыми твердыми частицами и пространственными зарядами системы газ — твердые частицы. В соответствии с другими методами электризации частиц эта реакция называется термической электризацией. Показано, что при температурах порядка 10 К ионизация газа может быть незначительной, а термоэлектронная эмиссия, которой противодействуют пространственные заряды, становится доминирующим механизмом, так что время достижения равновесия чрезвычайно мало.  [c.446]

Q, g = 1. Здесь А = 2,04-10 , В = 2,66-10 . Интегрирование путем подбора величин дает а = 2,27 ш Zp = 206, еа = == 4,62-10 34 , Пел = 4,76-10 34 , тогда как гн 10 34 , т. е. эффект ионизации газа незначителен. Без твердых частиц  [c.449]

Уравнение (10.75) приводится к случаю К = Q, когда ионизация в газообразной фазе незначительна. Параметр К характеризует соотношение между термоэлектронной эмиссией и накоплением электронов, испускаемых термически ионизованным газом, вследствие электростатической емкости твердых частиц в объеме зонда [311.  [c.455]

Экспериментальные исследования. Простейшая модель для изучения процессов ионизации и рекомбинации — инертный газ. Однако при уровне температуры 3000° К и умеренном давлении в десятки миллиметров ртутного столба невозможно поддерживать измеримую степень равновесной тепловой ионизации в инертном газе. Поэтому экспериментальное исследование проводилось в условиях неравновесной рекомбинации в пламени дуги аргона с добавками или без добавок различных твердых частиц [737]. Эта модель хорошо воспроизводит реальные условия в ракетной струе, где протекает процесс рекомбинации после быстрого расширения в сопле.  [c.457]

Накопление электронов. Когда положительно заряженные твердые частицы, имеющие заряд 2 , вводятся в ионизованный газ с концентрацией ионов щ (равной начальной концентрации электронов Пе1 при ионизации типа М М+ -[- е), конечная конг центрация электронов будет равна  [c.463]

Фиг. 10.12. Электропроводность благодаря термической ионизации. Сравнение с результатами, полученными при сгорании газа с добавками калия. Фиг. 10.12. Электропроводность благодаря <a href="/info/7215">термической ионизации</a>. Сравнение с результатами, полученными при сгорании газа с добавками калия.

Электрические свойства дуги. Для образования и поддержания горения дуги необходимо иметь в пространстве между электродами электрически заряженные частицы — электроны, положительные и отрицательные ионы. Процесс образования ионов и электронов называется ионизацией, а газ, содержащий электроны и ионы, ионизированными. Ионизация дугового промежутка происходит во время зажигания дуги и непрерывно поддерживается в процессе ее горения.  [c.10]

После возбуждения разряда ионизация в газе может происходить в основном двумя путями взаимным соударением частиц и поглощением квантов энергии (фотоионизация).  [c.39]

Неупругие соударения частиц между собой при высоких температуре и плотности газа приводят к так называемой термической ионизации, которая возникает за счет кинетической энергии частиц. Наиболее вероятна схема электронного удара  [c.44]

Плазму, находящуюся в термическом равновесии, т. е. имеющую практически одинаковую температуру для всех частиц, называют часто термической плазмой. Для нее, как указывалось выше, соблюдаются условия квазинейтральности и, за исключением предельных случаев высокого давления, законы идеальных газов. По виду плазмы сварочные дуги при атмосферном давлении могут быть отнесены к категории дуг термического типа. Можно рассматривать термическую ионизацию, как обратимую химическую реакцию газов  [c.53]

При прохождении электронного пучка через газ возникает пучковая плазма. Обычно для её создания используются пучки электронов с энергией в неск. сотен кэВ. Такие электроны свободно проходят через тонкие фольги и поэтому могут транспортироваться из электронной пушки в лаб. установку, содержащую газ при более высоких давлениях. Осе. процесс взаимодействия быстрых электронов с атома.ми или молеку-лалш газа — ионизация атомов или ионов. Образуемые при этом вторичные электроны имеют энергию, в неск. раз превышающую потенциал ионизации атомов или молекул. Т. о., при прохождении пучка электронов через газ энергия быстрых электронов преобразуется в энергию вторичных электронов (к-рая далее и используется) с высоким коэф. преобразования. Поэтому кпд устройств, возбуждаемых электронным пучком, достаточно велик. Напр., кпд молекулярных, хим. и эксимеркых лазеров, возбуждаемых электронным пучком, > 10%. Однако осн. достоинство возбуждения плазмы электронным пучком — возможность быстрого подвода энергии. Характерные времена возбуждения плазмы электронным пучком 10 с. Благодаря этому электронный пучок используется не только для создания импульсной Н. п., но и для предионизации. В мощных лаб. устройствах электронный пучок создаёт однородную первичную плазму, к-рая далее развивается под действием электрич. импульсного разряда.  [c.352]

Получение активных атомов это их ионизация. Чем выше температура, тем легче атом отдает свои электроны другим (лучше электропроводность). Поэтому основным фактором, стимулирующим ионизацию, является увеличение температуры при ХТО. Однако хорошо известны и другие приемы, например, использование постоянного тлеющего разряда между деталью (катод) и специальным анодом в пространстве насыщающей среды, обдув детали электрически ионизированной струей насыщающего газа, обработка импульсными электрическими разрядами, обработка в поле излучения и т. д. Такие электрофизические приемы высокоэффективны, но достаточно сложны и дорогостоящи. Существуют также химические катализаторы процесса активации. Так, при цементации деталей в твердом карбюризаторе для активации процесса получения ионизированного углерода к углю добавляют 10—30 % углекислых солей (карбонатов) ВаСОз, N32003, К2СО3. Интенсификация цементации из газовой среды достигается путем добавки аммиака к технологическим газам. Ионизация атомарного вещества необходима в первую очередь для их адсорбции — осаждения на поверхность обрабатываемой детали.  [c.198]

Для получения высоких температур столба дуги необходимо, стремиться к возможно большей степени ионизации газов. Характер ионизации плазмообразующей среды весьма существенное влияние оказывает на объемное теплосодержание (энтальпию) плазмы. Имеется отличие в процессе образования плазмы двух- и одноатомного газов. Ионизация двухатомного газа происходит после диссоциации его молекул, поэтому при исполь-зоваиии таких газов в плазме содержится большее количество энергии при сравнительно низких температурах диссоциации и ионизации (рис. 2.8).  [c.44]

Основные черты явления пробоя. Образование плазмы ва счет нелинейной ионизации газа. Ионизация газа глектронами, ускоренными при столкновениях с атомами в поле излучения. Динамика плазмы, образованной в результате ионизации газа  [c.190]

Имеется отличие в процессе образования плазмы двух- и одноатомного газов. Ионизация двухатомного газа происходит после диссоциации его молекул, например, водород диссоциирует на 90% при 4700° К, а азот — при Рис. 4.47. Вольтамперные характеристи- 90ОО° К (см. рис. 4.45). ки плазменной дуги в разных газах Причем их теплосодержа-  [c.146]

Хотя в газовой прослойке вокруг рабочего конца электрода среди прочих веществ присутствует железо, потенциал однократной ионизации которого всего 7 е, напряжение дуги в ванне ферросилициевой печи, как правило, выше, что обеспечивает ионизацию кремния и углерода, а это в свою очередь повышает температуру дугового газа. Ионизация кремния начинается при температурах выше 5500° К и заканчивается выше 8500° К.  [c.188]

Сечение возрастает за порогом ионизации е — достигает максимума при энергии электронов, в несколько раз превышающей порог, и затем медленно падает. В максимуме сечение, как правило, порядка 10- см . Рис. 6.4. Зависимость эффек- В не слишком плотном газе ионизация нативного сечения ионизации ступает обычно при температурах, гораздо электронгам ударом от энер- меньших потенциала ионизации ИкТе > 1.  [c.330]


Сущность способа. Плазма — ионязированньп газ, содержащий электрически заряженные частици и способный нроводить ток. Ионизация газа происходит при его нагреве. Степень ионизации  [c.64]

Известно, что при достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ноны. Ионизация газа, кроме того, может быть вызвана его взаимодействием с электромагнитным излучением (фотоионизацня) или бомбардировкой газа заряженными частииа.мн.  [c.290]

В работе oy и Димика [7371 рассматривался возможный случай, когда степень ионизации атомов газа в системе газ — твердые частицы может стать весьма существенной. При равновесии условие нейтральности заряда для нереагирующих твердых частиц в инертном газе записывается в виде  [c.454]

И В этом случае величина а максимальна для данного В. При более высоких значениях К в зависимости от его соотношения с В твердые частицы могут стать положительно или отрицательно заряженными (в этом случае электроны эффективно накапливаются на твердых частицах). Видно, что твердые частицы стремятся стать отрицательно заряженными при низком потенциале ионизации газа и высоком термоэлектронном потенциале твердого тела. Кружками на фиг. 10.7 показаны приблизительные асимптотические состояния для описанных ниже экспериментов. Пунктирные линии для каждой величины К на фиг. 10.7 являются пределами для любого газа, образующего тяжелые ионы те1т 0). Видно, что в области значений а вблизи или более 0 величина т /тг не влияет на соотношение между, а, В и К.  [c.457]

Молекулы газа нейтральны, поэтому газ обычно — хороший изолятор и может проводить электрический ток лишь при условии, что в него вводятся извне или генерируются внутри заряженные частицы. Приложив, например, достаточно сильное электрическое поле, моясно вызвать нарушение изолирующих свойств газа (пробой) и ионизацию его, вследствие чего он сможет пропускать значительные токи.  [c.35]

Газовый разряд может быть неустойчивым (например, искровым) и устойчивым. Последний можно классифицировать по внешнему виду темновой, тлеющий, в том числе коронный, и дуговой разряды. Например, если в длинной цилиндрической стеклянной трубке, заполненной газом при давлении около 100 Па, медленно повышать разность потенциалов между катодом и анодом, то приборы фиксируют наличие тока начиная с Ю ... 10 А. Он появляется вследствие ионизации в объеме газа, на стенках и электродах, вызываемой космическими лучами. С помощью ограничивающего сопротивления можно получить все три формы разряда (рис. 2.5). Темновой разряд переходит в тлеющий, который отличается уже заметным свечением, используемым в газосветных трубках. При этом катодное падение  [c.36]

Для газового разряда сопротивление не является постоянным (R ф onst), так как число заряженных частиц в нем зависит от интенсивности ионизации и, в частности, от тока. Поэтому электрический ток в газах не подчиняется закону Ома и вольтам-перная характеристика разряда для газов является обычно нелинейной.  [c.38]

В сильноточных сжатых дугах ионизация газа в столбе может достигать значений, близких к 100%, а термоэмиссионная способность катода исчерпана. В этом случае увеличение тока практически уже не может изменить числа заряженных частиц в дуге. Ее сопротивление становится положительным и почти постоянным R = onst. Высокоионизированная сжатая плазма по своим свойствам близка к металлическому проводнику. Закон Ома вновь становится справедливым в его обычном виде  [c.39]


Смотреть страницы где упоминается термин Газа ионизация : [c.478]    [c.470]    [c.98]    [c.59]    [c.46]    [c.65]    [c.71]    [c.185]    [c.78]    [c.326]    [c.446]    [c.450]    [c.57]    [c.45]    [c.53]   
Температура и её измерение (1960) -- [ c.375 ]



ПОИСК



Ионизация

Ионизация газов



© 2025 Mash-xxl.info Реклама на сайте