Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система уравнений каноническая гиперболического тип

В простейшем и наиболее важном для приложения случае линейной теории однородных изотропных упругих тел задача сводится к разысканию интегралов вырожденной гиперболической системы дифференциальных уравнений теории упругости или системы уравнений термоупругости, которая не относится к классическим каноническим типам, удовлетворяющих в некоторой области D X [О, оо) заданным начальным и граничным условиям (I, 14 и 15).  [c.312]


Основу принципа максимума для данных задач составляют функции zг Ь, х), играющие здесь роль вектора "ф и удовлетворяющие системе уравнений в частных производных, канонически сопряженной с исходной системой. Аналогичные результаты получены и для управляемых процессов, описываемых краевыми задачами для уравнений эллиптического типа, задачей Гурса для системы гиперболических уравнений, а также подобными задачами для уравнений первого порядка. Здесь минимизируемыми функционалами также являлись в большинстве случаев интегральные выражения.  [c.238]

Система дифференциальных уравнений термоупругости (1.1) состоит из уравнения движения упругой среды, принадлежащего гиперболическому (вырожденному) типу и из уравнения теплопроводности, относящегося к параболическому типу. Эта система, как уже отмечалось (см. I, 15, п. 1), не входит в известные канонические классы уравнений математической физики.  [c.418]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]


Главы XI и XII относятся к плоскому напряженному состоянию. Проведено подробное исследование уравнений пластического равновесия и преобразование их к каноническим системам для двух видов условий текучести. Показано, что эти уравнения в зависимости от характера напряженного состояния могут быть не только гиперболическими, но и эллиптическими.  [c.5]

Главы VII, VIII, IX и X посвящены плоскому деформированному состоянию. Проведено подробное исследование уравнений пластического равновесия и преобразование их к каноническим системам. Показано, что эти уравнения являются гиперболическими и даны эффективные приемы их численного. интегрирования. Изложен метод тригонометрических рядов, позволяющий получать решения некоторых задач в аналитической форме. Изучены уравнения пограничного слоя и выведены простые интегралы этих уравнений в напряжениях и скоростях.  [c.4]


Уравнения и краевые задачи теории пластичности и ползучести (1981) -- [ c.154 ]



ПОИСК



Вид канонический

Гиперболическая система

Гиперболическая система уравнени

Гиперболические уравнении

Каноническая система уравнений

Канонические уравнения уравнения канонические

Система каноническая

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте