Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория устойчивости по Карману

Первые работы по потере устойчивости неупругих стержней опубликованы только в конце XIX - начале XX вв. Энгессером и Карманом. Это обстоятельство связано с существенным усложнением в идейном и математическом смысле постановки задач о потере устойчивости упругопластических систем по сравнению с постановкой задачи о потере устойчивости упругих тел. Современное состояние теории устойчивости неупругих тел представлено в [20-22, 24, 47, 73, 75, 79, 81, 84, 117].  [c.8]


Теория устойчивости по Карману 369  [c.369]

Рассмотрим движение цилиндра (фиг. 4) в вязкой среде. Теоретически в точках А и А имеется повышенное давление и в точках С и С—пониженное. Поэтому около поверхности цилиндра получаются течения от к С и С и от Л к С и С з этими течениями пограничный вихревой слой увлекается, и за точками С и С вследствие получившихся противоположных токов начинают появляться вихри. При малых скоростях движения течение получается почти точно симметричное (фиг. 5). При увеличении же скорости вихри ва цилиндром приобретают известную интенсивность и питаются пограничным слоем, смываемым общим течением (фиг. 6), и ва телом образуются два симметрично расположенных вихря. Однако такое расположение парных вихрей не является устойчивым наличие каких-либо случайных причин, хотя бы в виде сотрясений, ведет к изменению их на вихри, отрывающиеся от цилиндра поочередно и располагающиеся сзади в шахматном порядке (фиг. 7). Периодич. отрывание таких вихрей наблюдается и при обтекании других тел и может при известной частоте произвести слышимый звук (напр, в органных трубах) или, попадая в резонанс, произвести колебания других систем (напр, вибрации проволок на аэроплане или стабилизатора от вихрей, срывающихся с крыльев аэроплана). Система шахматных вихрей позволила проф. Карману создать вихревую теорию лобового сопротивления.  [c.437]

Основы теории устойчивости за пределом упругости были заложены в конце XIX в. Ф. Энгессером , Т. Карманом и в середине XX в. А. А. Ильюшиным, Ф. Шенлн и др. В реальных конструкциях стержни, пластины и оболочки часто имеют такие размеры, что их потеря устойчивости происходит при пластических деформациях.  [c.337]

Некоторые результаты исследования перехода ламинарного пограничного слоя в турбулентный получены при применении соображений устойчивости. Ламинарное течение устойчиво, если возмущения со временем затухают, если же они нарастают, то ламинарное течение по достижении некоторого предельного состояния становится неустойчивым и может произойти переход ламинарного течения в турбулентное. Эти рассуждения применимы и к явлению перехода ламинарного слоя в турбулентный. Теорию устойчивости ламинарного пограничного слоя предложили в 1946 г. Л. Лиз и Линь Цзя-цзяо. Однако эти теоретические исследования не давали полного представления о механизме перехода. И если, как считал Карман в 1958 г., математическая теория устойчивости ламинарного пограничного слоя обнаруживала блестящее согласие с опытом в той части, где описываются затухание и нарастание колебаний, то это не означает, что мы действительно понимаем механизм перехода Не лучшее положение наблюдалось и в теории турбулентного пограничного слоя газа — не имелось достаточного количества экспериментальных данных для разработки полуэмпирических методов, для приближенного расчета характеристик такого слоя. Некоторый сдвиг наметился после работ советских ученых Ф. И. Франкля и В. В. Войшеля (1937), которые вывели формулы распределения скоростей и закон трения в турбулентном пограничном слое с учетом влияния числа Мкр и теплопередачи В 1940 г.  [c.325]


Теория устойчивости по Карману. Карман [39, 41] дал классический анализ устойчивости двух параллельных периодических цепочек вихрей. Он показал, что в невязкой жидкости вихревая дорожка имеет неустойчивость первого порядка (т. е. смещения вихрей от первоначального положения растут по экспоненте), за иск шчением случая hja = 0,281, соответствующего h v hla) = ]/2. Поскольку этот вывод можно найти во многих работах [51, 156] и [62, 13.72], мы его здесь не приводим.  [c.369]

Система нелинейных уравнений (8.38), связывающая функцию напряжений в срединной плоскости пластинки и функцию прогибов, выведена немецким ученым Т. Карманом. Совместно с граничными условиями она представляет основную систему нелинейных ди ференциаль-ных уравнений та>рии гибких пластинок. Решение этой системы в общем виде не получено. В настоящее время с помощью теории гибких пластинок получен ряд частных решений для равномерно распределенной поперечной нагрузки, а также для пластинок, теряющих устойчивость при сжатии и сд иге в их срединной плоскости,  [c.150]

Приближенного решения задач (см., например, [23—26]). Доннел 127] предложил теорию толких цилиндрических оболочек, которая широко применялась для решения различных задач. Двумя центральными проблемами теории оболочек являлись проблемы устойчивости и закритического поведения оболочек [28, 29]. Теория прощелкиваиия при потере устойчивости цилиндрических и сферических оболочек была предложена Карманом и Цянем [30—32 ]. Из других важных инженерных задач отметим температурные задачи теории оболочек, задачи устойчивости оболочек при температурных напряжениях [33, 34] и задачи о колебаниях оболочек [16, 35—37].  [c.282]

В теории вихревых дорог Кармана доказывается, что система вихрей, образующая вихревую дорогу, может находиться в устойчивом равновесии только при вполне определенном отногаенни ганрины дороги к расстоянию между двумя последовательными вихрями одного ряда. При этом определение этого отногае-пня, выполненное двумя различными методами Карманом и Жуковским, привело к различным числовым значениям, именно по Карману, для устойчивости  [c.172]

Отметим, что дискретный способ содержит более гибкие и широкие возможности для описания таких течений, в которых вихревые поверхности теряют устойчивость. Примером может служить изучение вихревых дорожек Кармана за пластиной. Здесь расчетньш путем устанавливаются устойчивые вихревые образования, обладающие конечными размерами. Вместе с тем классические дорожки Кармана [1.11, 1.12], строго говоря, неустойчивы [3.35]. Это связано с тем, что во введенной Карманом дорожке вихри имеют бесконечно малые размеры. Болес того, оказалось, что постулировать то или иное предельное течение для т —> оо в трывных задачах не всегда допустимо и при более широких допущениях, так как их может быть несколько (симметричная и несимметричная дорожки за пластиной). В теории решение может зависеть от начальных условий зада ш, а практическая реализуемость того или другого режима может определяться и другими обстоятельствами. В указанном случае наличие симметри шо поставленной разделительной пластины делает устойчивым симметричный режим, а отсутствие ее — несимметричный.  [c.59]

Следует отметить, что кроме необходимости в экспериментальном определении величин, входящих в теоретическую формулу, теория лобового сопротивления, данная Карманом, имеет и другие недостатки. Она относится только к неудобообтекаемым телам, определяет не полное лобовое сопротивление, а только часть его, происходящую от вихревой дорожки, и, кроме того, относится к весьма ограниченному диапазону чисел Рейнольдса. Как же указывалось ранее, устойчивые вихревые дорожки за неудобо-обтекаемыми телами наблюдаются только при числах Рейнольдса, не превосходящих приблизительно 2500. При больших значениях числа Рейнольдса движение жидкости в спутной струе становится турбулентным непосредственно за телом, вихри вследствие турбулентного перемешивания очень быстро диффундируют в окружаю-п(ую жидкость, так что, едва boshhkhj b, они тотчас же затухают.  [c.605]


Изложенное выше решение задачи устойчивости стержня за пределом упругости, по существу, принадлежит Энгессеру [ 1 и Карману [ 1. Последний провёл также большое экспериментальное исследование устойчивости стержней за пределом упругости и обнаружил хорошее подтверждение данной выше теории. В частности, для материалов, имеющих ярко выраженную площадку текучести на диаграмме 01 — ( 1, им в хорошем согласии с формулами (3.17), (3.18) обнаружена полная потеря устойчивости даже весьма коротких стоек.  [c.135]


Смотреть страницы где упоминается термин Теория устойчивости по Карману : [c.68]    [c.125]    [c.499]    [c.258]    [c.147]    [c.147]   
Смотреть главы в:

Струи, следы и каверны  -> Теория устойчивости по Карману


Струи, следы и каверны (1964) -- [ c.369 ]



ПОИСК



119 - Устойчивость Кармана

Изгиб — Форма плоская — Устойчивость центрально — Теория Кармана 81—85 — Теория Шенли

Изгиб — Форма плоская — Устойчивость центрально — Теория Кармана 81—85 — Теория Шенлн

Кармана



© 2025 Mash-xxl.info Реклама на сайте