Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агрессивные среды граница устойчивости

При повышенных температурах границы устойчивости не сдвигаются. Иногда при длительном контакте с агрессивной средой коррозия может наблюдаться даже если содержание золота превышает границу устойчивости. Например, сплавы золото—серебро, содержащие более 50 ат. % золота, подвергаются заметной коррозии при выдержке в азотной кислоте при 100 С в течение недели и более [3].  [c.293]


На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]

Приведенные среды для испытания некоторых металлов хорошо изучены и применяются, однако концентрацию их различные исследователи произвольно меняют. При исследовании растрескивания в агрессивных средах, в которых возможна потеря прочности металла за счет общей коррозии, необходимо учитывать этот фактор при определении истинной потери прочности за счет растрескивания. С этой целью при прочих равных условиях наряду с напряженными образцами в коррозионную среду одновременно помещаются, ненапряженные образцы. Один из ненапряженных образцов рекомендуется удалять в момент разрушения первого напряженного, другие—-по мере разрушения последующих. Относительное изменение предела прочности ненапряженных образцов характеризует потерю прочности металла вследствие общей коррозии. При испытаниях на устойчивость к растрескиванию необходимо предусмотреть однородность подготовки поверхности металла, так как она влияет на скорость процесса. Исследования [189—192] показали (табл. 10), что для ряда металлов повышение степени чистоты обработки поверхности существенно увеличивает время до растрескивания. Специальные опыты по изучению механизма влияния шлифования на скорость растрескивания показали, что шлифование вызывает 1) появление в поверхностном слое металла сжимающих напряжений и 2) увеличение скорости выделения по границам зерен р-фазы [191].  [c.120]

Появление границ устойчивости объясняется тем, что при взаимодействии сплава с агрессивной средой часть атомов основного металла переходит в раствор, а оставшиеся атомы более благородного или легко пассивирующего металла образуют на поверхности металла как бы барьер. Этот барьер состоит или из самих атомов благородного металла, или из защитных экранирующих пленок (рис. 141).  [c.245]


Вредной примесью в ферритных сталях является углерод, который с хромом образует химическое соединение — карбид хрома. Даже при быстром охлаждении стали от высоких температур при 1000—1100° по границам зерен стали выпадают карбиды хрома. Выпадение карбидов хрома обедняет хромом границы зерен и делает их менее устойчивыми против коррозии. При воздействии агрессивной среды разрушение стали происходит по границам зерен. Такой вид коррозии называется межкристаллитной коррозией, от вид коррозии наиболее опасен, так как разрушение быстро проникает в глубь металла.  [c.492]

Хромистые стали. Хром является основным легирующим элементом железоуглеродистых сплавов это объясняется дешевизной и доступностью, а также способностью его к пассивации. Граница устойчивости железохромистых сплавов соответствует содержанию хрома в сплаве от И до 14% (в зависимости от вида агрессивной среды). Стали с таким содержанием хрома называются нержавеющими. Для сталей с содержанием хрома (12— 14%) особое значение имеет углерод, который образует с хромом карбиды, при этом уменьшается содержание углерода в твердом растворе и ухудшаются свойства стали, ее коррозионная и термическая стойкость. Для хромистых сталей, содержащих 17% и выше хрома, влияние углерода несколько меньше, так как, несмотря на связывание части хрома в карбиды, количество его в сплаве остается достаточно высоким (более 12%) °.  [c.21]

Межкристаллитная коррозия обычно возникает в зонах сварных швов. Это объясняется тем, что при термической обработке нержавеющих сталей (высокохромистых) при высокой температуре (1000—1110° С) и последующем относительно быстром охлаждении происходят изменения состава металла по границам кристаллов за счет образования карбидов, т. е. соединений железа с углеродом, обладающих меньшей устойчивостью к агрессивным средам по сравнению с хромом.  [c.10]

Наружный слой должен обладать высокой устойчивостью к действию окружающей среды. В особой мере требуется устойчивость к действию лучистой энергии, чаще всего солнечного света на границе 0/Н с окружающей средой. На этой границе действие окружающей среды, например кислорода воздуха, особенно агрессивно, так как реакция на поверхности ускоряется действием света. Понятно, что это действие ослабевает по мере  [c.70]

При легировании коррозионно-неустойчивого металла атомами металла устойчивого, в данной агрессивной среде, при условии, что оба компонента дают твердый раствор, и при отсутствии в сплаве заметной диффузии, полученный сплав приобретает химическую стойкость только при определенных соотношениях компонентов в сплаве. Эти определенные соотношения для таких двухкомпонентных твердых растворов вытекают нз так называемого правила границ устойчивости твердых расттюров, сформулированного Тамманом и выражающего зави-си.мость между концентрацией твердого раствора и его корро-эиотюи устойчивостью (так называемое правило п/8).  [c.125]

Алюминиевые бронзы обладают хорошими механическими свойствами и повышенной устойчивостью во многих средах. По устойчивости они превосходят оловянные бронзы. Из них изготавливают детали клапанов, насосов, фильтров и сит для работы в кислых агрессивных средах, а также змеевики нагревательных установок, предназначенных для работ в разбавленных и концентрированных растворах солей при высоких температурах. Недостатком алюминиевых бронз является их чувствительность к местной коррозии по границам зерен и коррозии под напряжением вследствие холодной пластической обработки. Алюминиевые бронзы с 7—12% алюминия наиболее устойчивы и могут усп гпно применяться для изготовления оборудования травильных ванн, например насосов, клапанов, корзин для травления и др. Вальцованный сплав с 80% Си, 10% А1, 4,5% Ni и 1% Мп или Fe корродирует со скоростью менее 0,1 мм/год в 50%-ной серной кислоте при перемешивании и температуре 110°С или в 65%-ной серной кислоте при 85°С и скорости перемещения раствора 3 м/с. Известна также хорошая уС тойчивость алюминиевых бронз к действию слабых органических кислот и щелочей, за исключением аммиака независимо от концентрации и температуры.  [c.122]


После определения конструкции композита - выбора компонентов и распределения их функций, приступают к решению наиболее сложной задачи изготовлению композиционного материала, вк.тючающему выбор геометрии армирования (например, различного рода плетения) и наиболее эффективного технологического метода соединения компонентов композита друг с другом (например, золь-гель методы, методы порошковой металлургии, методы осаждения-напыления и другие). Однако основная сложность заключается не в сборке отдельных компонентов композита, а в образовании между ними прочного и специфического соединения. При этом большую роль играет предварительный анализ фаничных процессов, происходящих в системе. Межфазное взаимодействие оказывает влияние на прочность связи компонентов, возможность химических реакций на границе и образование новых фаз, формируя такие характеристики композита, как термостойкость, устойчивость к действию агрессивных сред, гфочность и дру гие важные экс-штуатационные характеристики нового материала. Осуществление кон-тpOJ я не только за составом, но и за структурой требует развития теории, которая позволила бы предсказать, как будет влиять то или иное изменение на свойства композита. Когда стало расти число возможных комбинаций матрицы и армирующих волокон, а простое слоистое армирование начало уст пать место армированию сложными переплетениями, исследователи стали искать пути, позволяющие избежать чисто эмпирического подхода. Задача состоит в том, чтобы по характеристикам волокна (частиц и др.), матрицы и по их компоновке заранее предсказать поведение композита.  [c.12]

Граница устойчивости распространяется не только при легировании сплавов более благородным металлом, она также наблюдается в сплавах, у которых один из компонентов обладает способностью к пассивированию или, вернее, к самопассивированию (нержавеющие стали, железохромистые и железохромоникелевые сплавы). Эта граница устойчивости также наблюдается в других системах, когда один из компонентов в результате взаимодействия с агрессивной средой образует защитные экранирующие пленки из нерастворимых соединений. Примером такого рода образования защитных экранирующих пленок являются сплавы железа с кремнием (ферросилициды), никеля с кремнием и др.  [c.493]

Таким образом, полученные данные еще раз показывают, чтощж разработке составов полимерных композиций, предназначенных для использования в качестве покрытий, не следует тратить усилий на достижение высоких исходных значений прочности адгезионной связи (кроме случаев обеспечения необходимой величины прочности адгезионной связи, диктуемой соображениями механической устойчивости систем полимер-металл), важна природа связей на границе раздела полимер-металл, их устойчивость к адсорбционному замещению компонентами агрессивной среды.  [c.85]

Аустенит представляет собой твердый раствор хрома, никеля, марганца и других элементов в железе. Углерод обладает ограниченной растворимостью в аустените. При комнатной температуре стабильное (устойчивое) содержание углерода в твердом растворе аустенита не превышает 0,02%. При большем содержании углерода в стали и быстром ее охлаждении с высоких температур он находится в аустените в виде пересыщенного (нестабильного) твердого раствора. При этом сталь не подвергается межкристаллитной коррозии. Однако последующий нагрев металла в интервале критических температур (500—800° С) приводит к тому, что избыточный углерод (сверх 0,02% ) выделяется из твердого раствора на границы зерен в виде сложных карбидов железа и хрома [(Сг, Ре)з С или (Ре, Сг)2зСе], в которых преобладает хром. В результате выделения богатых хромом карбидов содержание хрома в пограничных слоях аустенитных зерен уменьшается до 12% и менее (рис. 48, б) и становится недостаточным для коррозионной стойкости металла в условиях воздействия агрессивной среды.  [c.88]

Граница устойчивости наблюдается также в сплавах, у которых один из компонентов обладает способностью к самопассивированию. Эта граница наблюдается и в системах, когда один из компонентов в данной агрессивной среде образует защитные экранирующие пленки из нерастворимых соединений.  [c.326]

Коррозионная стойкость таитала связана с наличием на его поверхности тонкой сплошной пленки пятиокиси ТазОб. В целом ряде очень агрессивных сред металл пассивируется и становится почти таким же инертным, как золото или платина. В предложенной Пурбэ [5] таблице термодинамической устойчивости тантал следует за цинком и имеет номер 34 (номер 1 имеет золото). В то же время в таблице практической устойчивости тантал благодаря своей пассивной окисной пленке располагается непосредственно за родием (номер 1) и опережает золото (номер 4). Окисная пленка на тантале обладает хорошей адгезией и, по-вндимому, не является пористой. Согласно некоторым данным, на границе раздела окисел — металл образуется слой окисей, устойчивых до 425 С. При нагреве выше этой температуры устойчива только пятиокись, поэтому внутреннее напряжение (создаваемое металлом), возникающее в окисле в ходе его превращения, приводит к растрескиванию и отслаиванию защитной пленки.  [c.205]

Стал , содержащие 6—10% никеля и 12—14% хро ма, имеют устойчивую структуру аустенита, что обеспечив ает им значительную прочность, высокую пластичность, высокую коррозионную стойкость в агрессивных средах и хорошую сопротивляемость окислению при высоких температурах. Другие легирующие элементы способствуют образованию феррита, получению мелкозернистой структуры и приданию других свойств металлу, в состав которого их добавляют. Содержание углерода в стали сказывается сильнее, чем других легирующих элементов. При температуре 500—800 °С в сталях, содержащих 0,02% С, наблюдается диффузия углерода к поверхности зерен, где он образует с хромом устойчивые соединения, называемые карбидами. В результате на границах зерен сплав обедняется хромом, и сталь приобретает склонность к межкристал-литной коррозии. Стойкость против межкристаллитной коррозии л 38  [c.138]


Это не означает, что каждый однофазный сплав при изменении состава имеет все 8 порогов (или границ) устойчивости. Количество порогов, как и их значение, определяется природой металлов и степенью агрессивности среды. Так, сплав медь — золото в растворе АдКОз имеет п, равное 1, в растворе НдС1г — равное 2, а в 50%-ном растворе НМОз — равное 4. Сплав железо — хром в зависимости от среды имеет пороги устойчивости Ув. /в, 78-  [c.70]

После провоцирующих нагревов по границам зерен аустенита выпадают карбиды, обогащенные хромом, и образуются обедненные хромом зоны. В средах с сильной агрессивностью в отношении внутрикристаллитного КР (например, кипящие концентрированные растворы Mg la) эти процессы мало влияют на характер и интенсивность КР. Однако в средах с малым содержанием хлоридов или в случае аустенитных сталей с повышенной устойчивостью к внутрикристаллитному КР (например, стали с повышенным содержанием никеля), выпадение карбидов и образование обедненной зоны может привести к растрескиванию межкристаллитного характера.  [c.123]


Смотреть страницы где упоминается термин Агрессивные среды граница устойчивости : [c.129]    [c.130]    [c.258]    [c.124]    [c.149]    [c.28]   
Коррозионная стойкость материалов (1975) -- [ c.97 ]



ПОИСК



Агрессивные среды

Граница устойчивости

С агрессивная

Среды агрессивность



© 2025 Mash-xxl.info Реклама на сайте