Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Начальные деформации в нелинейных задачах упругом анализе

Во многих случаях (но не всегда) можно получить необходимый. ответ, изучая упруго-пластическую деформацию системы, имеющей начальные отклонения. Однако такой анализ приводит к нелинейным задачам и также связан с большими математическими трудностями. Обычно исходят из некоторого статического критерия, разыскивая нагрузку, для которой возможны различные близкие формы равновесия при тех или иных дополнительных условиях. Эти критерии, рассматриваемые в следующем параграфе, не имеют надежного теоретического обоснования их значение иллюстрируется анализом поведения очень простых моделей упруго-пластических тел и подтверждается экспериментальными данными.  [c.350]


Анализ конкретных задач о трещинах в реальном нелинейно-упругом теле, напряженное состояние которого зависит лишь от его деформации (не зависит от поворотов), провести аналитическими средствами довольно трудно. (Решена плоская задача при условии сильного начального растяжения тела [119].) Однако выводы о концентрации деформаций (см. 3.3), о связи между раскрытием трещины и напряжениями на ее продолжении, а также о потоке энергии (см. 3.4) можно сделать, основываясь на геометрически точных соотношениях и не привлекая конкретных уравнений состояния. Достаточным является введение довольно естественных предположений общего характера, например об устойчивости материала. Оказывается, что неограниченность деформаций у края трещины не является следствием линеаризации. Она сохраняется и при точной постановке задачи. Характер особенности может измениться, но поток энергии сохраняется - линейная теория определяет его правильно.  [c.69]

В монографии с привлечением теории двухточечных полей и метода конвективных координат изложены основы нелинейной теории упругости. Приведены решения задач устойчивости равновесия шара, сферической оболочки, параллелепипеда, цилиндра. Детально исследованы акустические волны различного рода, в том числе волны ускорения, плоские синусоидальные волны и др. Решены задачи о бесконечно малых и конечн1 1х колебаниях при заданных начальных деформациях. В приложении даны необходимые сведения по тензорному анализу, теории поверхностей.  [c.4]

В работах А. Г. Горшкова и М. И. Мартиросова [29], М. И. Мартиросова [51-53] проведен численный анализ динамического поведения упругих сферических оболочек, связанных с твердым телом, при несимметричном входе в полупространство, занятое идеальной несжимаемой жидкостью. Гидродинамические нагрузки, действующие на оболочку со стороны жидкости, определяются как суперпозиция нагрузок от вертикального проникания оболочки и горизонтального движения изменяющейся во времени ее погруженной части. Для исследования напряженно-деформированного состояния тонкой упругой оболочки используется один из вариантов геометрически нелинейных уравнений движения, учитывающих инерцию вращения и деформацию поперечного сдвига. К ним добавляются уравнения движения всей конструкции как твердого тела. Задача решается методом конечных разностей с применением явной схемы типа крест . Анализируется влияние на динамическое поведение конструкции начальной скорости и угла входа, начальной угловой скорости вращения, сжимаемости жидкости, подъема ее свободной поверхности (эффект Г. Вагнера), толщины оболочки, массы твердого тела и ряда других факторов. Исследуется также влияние гидроупругого взаимодействия между оболочкой и жидкостью на динамику входа. Показано, что при углах тангажа ч ) 60° задачу о наклонном входе конструкции в жидкость можно заменить задачей о вертикальном входе с начальной скоростью, равной вертикальной составляющей при несимметричном погружении. Кроме того, установлено, что до скоростей Уо 100 м/с сжимаемость жидкости (воды) практически не влияет на напряженно-деформированное состояние сферической оболочки.  [c.402]



Методы граничных элементов в прикладных науках (1984) -- [ c.170 , c.172 ]



ПОИСК



Анализ деформаций

Анализ нелинейный

Деформации начальные

Деформация нелинейная упругая

Деформация упругая

Задача начальная

Задача с начальными деформациями

Задача упругости

Задачи анализа

Начальные деформации в нелинейных задачах

Нелинейные задачи

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте