Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Максвелла, решения для анизотропной среды

Решение это сильно упрощается, если пользоваться системой главных диэлектрических осей. Остановимся иа некоторых особенностях решения системы уравнения Максвелла для анизотропных сред.  [c.249]

Используя связь между О л Е, характеризующую анизотропную среду, можно применить в дальнейшем формальную теорию Максвелла, составив соответствующие уравнения, причем в качестве осей координат удобно выбрать главные направления диэлектрической проницаемости. Не производя соответствующего исследования, ограничимся сообщением результатов. Решение уравнений Максвелла для анизотропной среды, в отличие от решения для изотропной среды, характеризуется следующими особенностями.  [c.500]


Уравнение Максвелла, решения для анизотропной среды 500 Условие стационарной генерации 781 — синусов 287, 310, 344  [c.926]

Решение задачи о распространении света в анизотропной среде может быть получено путем решения системы уравнения Максвелла для немагнитных диэлектриков с учетом (10.2)  [c.249]

А. Для анизотропных однородных сред можно указать случаи, когда уравнения Максвелла удовлетворяются только решениями вида  [c.25]

В настоящей статье мы выберем именно этот путь для определения нелинейной части поляризации. В 2 выводятся квантовомеханические выражения для нелинейных индуцированных электрических дипольных моментов с точностью до членов, квадратичных и кубичных относительно напряженности поля. Эти выражения иллюстрируются на примере ангармонического осциллятора. В 3 устанавливается связь между микроскопическими нелинейными свойствами среды и величинами, характеризующими макроскопическое поле. Обсуждается также запаздывание и моменты более высоких порядков. В 4 нелинейная поляризация вводится в уравнения Максвелла. Решения этих уравнений в явной форме для бесконечного нелинейного анизотропного диэлектрика даны в 5—7. Они описывают взаимодейст-  [c.267]

Фундаментальные уравнения Максвелла (2.6) — (2.9) для электромагнитного поля в веществе имеют универсальный характер и в полной мере применимы к анизотропным средам. Будем искать их решение в виде плоских монохроматических волн, где Е, О, В зависят от координат и времени по закону ехр4(кг— ыО. Введем единичный вектор волновой нормали направленный вдоль волнового вектора к (т. е. перпендикулярно плоскостям равных фаз)  [c.180]

Во-первых, изложенная теория может быть обобщена на систему уравнений Максвелла. Некоторые трудности при этом возникают в связи с тем, что в отличие от скалярного волнового уравнеиия функция Грина для системы уравнений Максвелла сингулярна [175]. Поэтому при обобщении изложенной теории на случай электромагнитного поля приходится пользоваться специальными приемами для исключения особенностей (см. [175, 176] . Развитые выше методы начинают находить применения при решении различных конкретных задач. Так в [176] рассчитана пространственная дисперсия неоднородной среды, в работе [177] вычислен тензор эффективной диэлектрической проницаемости сильнонеоднородной анизотропной среды.  [c.497]


С помощью квантовомеханической теории возмущений вычислены индуцированный нелинейный электрический дипольный момент и моменты более высоких порядков атомной системы, облучаемой одновременно двумя или тремя световыми волнами. Учтены члены, квадратичные и кубичные по полю. Выведено важное пространственно-частотное перестановочное соотношение для нелинейной восприимчивости и проанализирована ее зависимость от частоты. Установлено соотношение между нелинейными микроскопическими свойствами и эффективной макроскопической нелинейной поляризацией, которую можно ввести в уравнения Максвелла для бесконечной однородной анизотропной нелинейной диэлектрической среды. Для нелинейного диэлектрика выведены соотношения для энергии и мощности, соответствующие соотношениям Мэнли — Роу в теории параметрических усилителей. Получены в явной форме решения системы уравнений для комплексных амплитуд, описывающих взаимодействие плоской световой волны с ее второй гармоникой или взаимодействие трех плоских электромагнитных волн, которые удовлетворяют энергетическому соотношению (u3 = (Oi-t-W2 и соотношению для импульсов кз = kl -Ь ка -Ь Ак. Рассмотрена генерация третьей гармоники и взаимодействие между большим числом волн. Обсуждены возможности применения теории для исследования низкочастотного и высокочастотного эффекта Керра, модуляции света, генерации гармоник и параметрического преобразования света.  [c.265]


Смотреть страницы где упоминается термин Уравнение Максвелла, решения для анизотропной среды : [c.186]   
Оптика (1976) -- [ c.500 ]



ПОИСК



Анизотропная среда, уравнение

Анизотропность

Максвелл

Среда анизотропная

Уравнение Максвелла

Уравнение Максвелла, решения для



© 2025 Mash-xxl.info Реклама на сайте