Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы монокристалла

Важнейшее применение рентгеновской спектрографии — исследования с помощью рентгеновских лучей структуры кристаллов (а в последнее время и молекул) и определение параметров кристаЛ лической решетки. В тех случаях, когда мы располагаем монокристаллами достаточных размеров, можно применить для таких рентгеноструктурных исследований метод Лауэ (см. 117), используя рентгеновское излучение со сплошным спектром.  [c.411]


Экспериментальные методы получения рентгенограмм. Атомную структуру монокристалла обычно исследуют следующим образом  [c.49]

Существующие методы рентгеносъемки монокристаллов могут быть классифицированы следующим образом  [c.49]

В отливках при кристаллизации путем очень медленного отвода тепла, а также с помощью других специальных способов (плазменно-дуговой метод или направленная кристаллизация слитков и отливок и др.) может быть получен кусок металла, представляющий собой один кристалл, так называемый монокристалл.  [c.24]

Физическое состояние сплавов. В некоторых экспериментах желательно использование монокристаллических образцов. В настоящее время хорошо известны следующие методы выращивания монокристаллов  [c.185]

При обработке монокристаллов для придания им необходимой формы и размеров следует избегать методов, могущих вызвать деформацию. В связи с этим обычные методы нежелательны. Во многих случаях единственным возможным способом является химическое или электролитическое растворение кристалла с поверхности, которое продолжают до тех пор, пока кристалл не приобретет желаемых размеров. Но даже и в этом случае есть опасность преимущественного растворения одной компоненты и удаление ее из сплава в тонком слое, прилегающем к реагирующей поверхности. Если металл впоследствии подвергается отжигу, то имеющийся на поверхности избыток другой компоненты распространяется по всему объему образца. Этот эффект особенно существен в сплавах с малой концентрацией примеси ).  [c.185]

Уайт и Вудс [121] измеряли теплопроводность спеченных бериллиевых стержней с высоким остаточным электрическим сопротивлением и вычисляли тем же методом, что и для сплавов. Их значение х = 2-10 меньше значений, полученных для монокристалла в магнитном поле. Тот факт, что решеточная теплопроводность спеченного образца вдвое меньше теплопроводности монокристалла, не является сам по себе удивительным, однако из него вытекает, что сопротивление W , полученное для загрязненных образцов, не может быть отождествлено непосредственно с We, даже если оно изменяется как Т .  [c.292]

Поскольку межплоскостное расстояние d, длина волны X и угол Вульфа—Брэгга взаимосвязаны, причем d фиксировано, то для наблюдения дифракции необходимо либо фиксировать но варьировать А, либо фиксировать 1, но варьировать Это приводит к следующим основным методам дифракционного эксперимента [29, 40] метод неподвижного кристалла (Лауэ), вращающегося монокристалла, поликристалла (Дебая). Эти методы достаточно подробно описаны, например, в [40].  [c.186]

Этим методом могут быть получены монокристаллы диаметром не более 12 мм. Кристаллы большего диаметра выращивают из расплава в гарнисаже на специальных установках (рис. 16).  [c.33]


МЕТОДЫ ВЫРАЩИВАНИЯ ДИЭЛЕКТРИЧЕСКИХ МОНОКРИСТАЛЛОВ ИЗ РАСПЛАВА  [c.51]

Рассмотрим физико-химические процессы, обусловленные термической диссоциацией исходного вещества, его химическим взаимодействием с материалом контейнера и атмосферой кристаллизации. Без учета этих процессов невозможно определить температурно-временной режим кристаллизации, а следовательно, оптимальные условия и метод выращивания монокристаллов.  [c.52]

Рассмотрим основные методы выращивания диэлектрических монокристаллов из расплава.  [c.53]

Метод Чохральского (рис. 25) позволяет выращивать монокристаллы достаточно больших размеров, которые по степени структурного совершенства являются одними из лучших среди монокристаллов таких же соединений, выращенных другими методами. При выращивании монокристалла монокристаллическую затравку 5, например граната, закрепляют в тугоплавкой свече 4, 54  [c.54]

Применяя этот метод выращивания монокристаллов, необходимо учитывать возможность изменения стехиометрического состава смеси из-за повышенной летучести одного из компонентов, особенно, если расплав выдерживается некоторое вре.мя для удаления воздуха и газов.  [c.55]

Монокристаллы со структурой типа перовскита выращивают методом Чохральского, однако технология пока не доведена до уровня технологии получения кристаллов со структурой типа граната.  [c.78]

Монокристаллы каких материалов используют в твердотельной квантовой электронике и какими методами их получают  [c.78]

Основными методами получения монокристаллов полупроводников являются выращивание из расплава, метод зонной перекристаллизации и выращивание из газообразной фазы. В ряде случаев применяют метод выращивания из раствора и другие методы.  [c.81]

Рис. 3.25. Схема установки для выращивания монокристаллов по методу Чохральского Рис. 3.25. Схема установки для <a href="/info/17905">выращивания монокристаллов</a> по методу Чохральского
Метод выращивания монокристаллов из расплава (метод Чохральского), как правило, обеспечивает высокие скорости выращивания и получение больших по размеру кристаллов.  [c.81]

На рис. 3.28 приведена схема установки выращивания монокристаллов бинарных соединений полупроводников из газовой фазы методом взаимодействия исходных компонентов. Выращивание монокристалла производится в потоке нейтрального газа или водорода. Печь применяют трехсекционную, причем две крайние секции используют для испарения компонентов. Средняя печь предназначена для поддержания необходимой температуры в реакторе, где происходит смешивание паров компонентов и их реакция. Температура в реакторе ниже, чем температура плавления образующегося соединения. Это вызывает конденсацию соединения на стенках реактора в виде кристаллов.  [c.84]

Перспективным является метод вакуумной плавки, особенно тугоплавких металлов, при помощи электронного луча, позволяющий получать металл в слитках высокой чистоты. Наибольшего внимания заслуживает при этом метод вертикальной (бестигель-ной) зонной вакуумной плавки с электроннолучевым нагревом. Получаемые этим методом монокристаллы ниобия, тантала и молибдена отличаются исключительно высокой чистотой и пластичностью.  [c.181]

Приведенный выше далеко не полный обзор свойств аморфных твердых тел свидетельствует о том, что некристаллические вещества образуют класс материалов с большим разнообразием физических свойств. Их относительно слабая чувствительность к посторонним примесям позволяет использовать для изготовления аморфных твердых тел более простые и дешевые методы, чем в случае выраш,ивания.монокристаллов. Все это, вместе взятое, дает основание утверждать, что применение некристаллических твердых тел будет еще более широким.  [c.369]

Ход изменения восприимчивости в поперечном поле для хромо-метил-аммониевых квасцов показан на фиг. 69. Соответствующие эксперименты были выполнены Бейном, Стенландом, де-Клерком и Гортером [128], использовавшими сферический монокристалл, расположенный таким образом, что-и приложенное, и измерительное поля были направлены параллельно кубическим осям. В этих исследованиях применялся баллистический метод при измерительном ноле напряженностью 1,08 эрстед период гальванометра равнялся 1,3 сек.  [c.542]


Метод ориентироваиня ядер Паунда [3421, о котором говорилось выше, требует больших градиентов поля. Последние могут быть получены в случае асимметричных электронных оболочек (какие встречаются при гомеоноляр-ных связях). Этот метод приводит к выравниванию эксперименты должны выполняться па монокристаллах. Парамагнитные ионы в этом методе нужны только для предварительного охлаждения. Однако до сих нор еще не было сообщено о каких-либо экспериментах, выполненных этим методом.  [c.600]

Основных методов исследования в нейтронографии два. В одном методе измеряют полное сечение упругого рассеяния как функцию энергии нейтронов. В другом — снимают нейтронограмму образца, т. е. получают угловое распределение для рассеяния пучка моно-энергетических нейтронов монокристаллами или поликристаллами. Как и в рентгенограмме, положение максимумов нейтронограммы определяется структурой кристаллической решетки (в соответствии с условием (10.18) Брэгга — Вульфа), а величина этих максимумов зависит от амплитуд рассеяния.  [c.555]

РЕНТГЕНОВСКАЯ ТОПОГРАФИЯ, использующая тот же эффект дпфракциопиого контраста, что и просвечивающая электронная микроскопия, также позволяет наблюдать отдельные дислокации. Но из-за малой разрешающей способности она применима лишь к монокристаллам с плотностью дислокаций не выше 10 — 10 см . Поэтому этот метод не может сколько-нибудь широко использоваться для изучения дислокационной структуры металлов и сплавов. Основная область применения метода — анализ дислокационной структуры совершенных монокристаллов полупроводников (кремний, германий и др.).  [c.99]

В начале 50-х годов были созданы пьезоэлектрические материалы, представляющие собой поликрпсталлический твердый раствор монокристаллов, вектор поляризации которых ориентирован сильным внешним электрическим полем. Открытие ньезокерамн-ческих материалов, обладающих рядом преимуществ по сравнению с традиционными монокристаллами, значительно повысило интерес к исследованиям прочности и разрушения пьезоэлектрических материалов с использованием методов механики сплошной среды, электродинамики и кристаллофизики.  [c.70]

Метод Вернейля (рис. 24) является одним из наиболее разработанных методов получения монокристаллических соединений, имеющих достаточно высокие температуры плавления. При выращивании монокристаллов по этому методу ис.ходную смесь-порошок с размерами частиц 1—2 мкм подают из бункера 1 непрерывной струей через пламя газовой кислородно-водородной горелки 2, являющейся источником высокой температуры (2300 С). Проходя через пламя, порошок частично расплавляется и попадает на тугоплавкий корундовый или силитовый стержень 7, на конце которого закреплена монокристаллическая затравка 6 определенной ориентации. Затравка постепенно вводится в зону высоких температур до образования на ее конце устойчивой пленки расплава.  [c.53]

Метод Вернейля является бестигельным и позволяет выращивать монокристаллы больших размеров по диаметру и по длине, а также проводить кристаллизацию в окислительной атмосфере при высоких температурах. Однако качество получаемых кристаллов вследствие недостаточно равномерной подачи порошка, непостоянства температуры пламени и трудности ее стабилизации невысоко. Кроме того, при выращивании монокристаллов часть исходного порошка проходит мимо затравки, что весьма нежелательно при использовании дорогостоящих материалов.  [c.54]

Метод горизонтально направленной кристаллизации — метод Багдасарова (рис. 26) — заключается в следующем. В контейнер 4, имеющий форму лодочки, помещают исходное вещество — шихту 3 в виде порошка, кристаллического боя или керамических таблеток. Перемещая контейнер через зону нагрева, создаваемую нагревателем 5, шихту расплавляют и за-кристаллизовывают. Для получения строго ориентированных монокристаллов в вершину лодочки устанавливают затравку и наблюдают как за моментом затравления, так и за формой фронта кристаллизации в процессе выращивания монокристалла. Так как при этом методе высота расплава много меньше среднего радиуса его поверхности, возникают условия эффективного удаления неконтролируемых примесей испарением. Открытая поверхность расплава позволяет вводить активирующую при.месь на любом этапе выращивания монокристалла.  [c.56]

Этим методом можно многократно перекристаллизовывать вещества. Кроме того, он позволяет выращивать монокристаллы заданных геометрических форм и непрерывно проводить процесс, перемещая серии контейнеров через зону кристаллизации, что создает предпосылки для автоматизации. Метод позволяет создавать достаточно равномерное температурное поле, обеспечивая выращивание ненапряженных монокристаллов, например сапфира, таких больтиих размеров, которые другими методами получить невозможно.  [c.56]

Когда подобраны активный ион и матрица, следует рассмотреть диаграмму состояний, которая показывает, что получается в результате взаимодействия двух (и более) веществ. В твердотельной электронике в качестве активной среды применяют сложные оксиды (например, 5 А12О,, X 3 У,Оз — гранат), так как они обладают высокими прозрачностью в нужном диапазоне длин волн, теплопроводностью и температурой плавления, а также отсутствием взаимодействия с агрессивными средами. При выборе оптимального состава активной среды необходимо учитывать изоморфное замещение с минимальным искажением кристаллической решетки матрицы ее ионов ионами редкоземельного элемента и метод выращивания монокристаллов.  [c.58]

В последнее время широкую известность приобрели монокристаллы сапфира, легированные ионами титана Т1 + и ванадия У +, электронная конфигурация которых 1 5 2 5 2 р 3 5 3р 3с( . При такой электронной конфигурации образуется одно состояние Ю, которое расщепляется в кристаллическом поле решетки сапфира на два состояния и При переходах между уровнями этих состояний происходит генерация лазерного излучения. Особенностью активных сред с ионами титана и ванадия является возможность плавной регулировки (перестройки) частоты генерации лазера. При активации монокристаллов сапфира ионами титана перестройка осуществляется в пределах 0,68—0,93 мкм, а ионами ванадия — 0,59—0,62 мкм. Монокристаллы сапфира с различными примесями выращивают методами Вернейля, Чохральского и Багдасарова (см. главу третью).  [c.75]


Использование в качестве активатора ионов хрома позволяет на переходах Е, р2 Аа создавать перестраиваемые лазеры в красной и ближней инфракрасной областях спектра. В решетку граната можно изоморфно вводить до 100% активаторных ионов некоторых редкоземельных элементов, например Ег + или Но +, что способствует созданию лазеров, генерирующих излучение с длиной волны около 3 мкм. Эти лазеры открывают новые возможности в лазерной хирургии и инженерной биологии. Трехподрешеточная структура граната позволяет изоморфно вводить ионы элементов практически всех групп периодической системы, что при условии сохранения локальной электронейтральности обеспечивает необходимое окружение активаторных центров. Монокристаллы гранатов выращивают методами Чохральского и Багдасарова.  [c.77]

Реакция осуществляется при температуре 950° С. Кроме того, применяют методы термического разложения тетраиодида кремния 5И4 или силана 5Ш4 и др. После извлечения из соединений в целях получения очищенных монокристаллов кремний подвергают бестигельной вертикальной зонной плавке. В технологическом отношении кремний более сложный материал, чем германий, так как он имеет высокую чемиературу плавления 1420° Сив расплавленном состоянии химически весьма активен (вступает в реакцию практически со всеми тиг льными материалами).  [c.79]

При выращивании из расплава монокристаллов полупроводниковых соединений пользуются методом Бриджмена -Стокбаргера. Нахреватель в этой установке устроен таким образом, что по его длине создается определенный градиент температуры (рис. 3.26 ). При выращивании кристаллов разлагающихся соединений тигель с веществом помещают в запаянную ампулу, в которой поддерживается необходимое давление паров летучего компонента. В положении 1 содержимое тигля рас-  [c.82]

Метод зонной перекристаллизации (плавки) для получения монокристаллов состоит в том, что плавление по-ликристаллического слитка, помещенного в тигель, осуществляется с помощью нагревателя, создающего короткую зону, температура которой  [c.82]

При изучении механизмов пластической деформации методом исследования изменения дислокационной структур )1 был выявлен процесс текстурирования монокристаллов кремния и ниобия. Методом прямого наблюдения дислокационной структуры было (юказано, что при скольжении индентора в поверхностных слоях стали XI8H9T достигается в1>1сокая плотность дислокаций с образованием полос скольжения в виде пакетов. При этом отчетливо наблюдается ориентировка пакетов в направлении, перпендикулярном действию тангенциальных сил [29].  [c.45]


Смотреть страницы где упоминается термин Методы монокристалла : [c.156]    [c.156]    [c.165]    [c.156]    [c.33]    [c.447]    [c.452]    [c.551]    [c.590]    [c.600]    [c.600]    [c.76]   
Металлургия и материаловедение (1982) -- [ c.156 ]



ПОИСК



Выращивание монокристаллов по методу Чохральского

Методы выращивания диэлектрических монокристаллов из расплава

Методы выращивания и механические свойства металлических монокристаллов

Методы выращивания и свойства монокристаллов тугоплавких металлов

Методы выращивания монокристаллов

Методы изучения синхронизма в монокристаллах

Монокристалл

Монокристаллы алюминия, выращивание методом Тидема

Пигальская Л. А. К расчету температурных полей в оптических монокристаллах при выращивании их методом направленной кристаллизации



© 2025 Mash-xxl.info Реклама на сайте