Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория вероятностей марковских процессов — Метод

Остановимся кратко на основных методах, которые используются в настоящее время при вероятностном исследовании нелинейных систем. Точное решение нелинейных уравнений статистической динамики принципиально возможно методами теории Марковских процессов. Многомерные распределения, переходные вероятности, моментные функции процессов получают на основании уравнений типа Фоккер — Планка — Колмогорова. Однако применение методов теории Марковских процессов в конкретных инженерных задачах до сих пор ограничено из-за вычислительных  [c.78]


Полные аналитические зависимости по надежности можно составить, используя теорию марковских случайных процессов, или методом численного моделирования с последующим расчетом на ЭЦВМ или на специальных аналого-цифровых моделирующих машинах. Однако ряд задач более простого характера можно решить по элементарным зависимостям теории вероятностей [4 в 5].  [c.11]

В предьщущих разделах бьши рассмотрены только первые два момента теории случайных функций — математическое ожидание и корреляционная функция. К сожалению, далеко не все прикладные задачи могут быть решены методами корреляционной теории - например, часто возникающая при анализе динамических систем задача об определении вероятности превышения ординаты случайной функции заданных значений. Эти задачи можно решить, если ограничиться процессами, обладающими некоторыми специальными свойствами, но представляющими практический интерес. В предьщущих параграфах методы корреляционной теории использовались для анализа систем с линейной связью между входом и выходом. В этом случае корреляционная теория дает возможность получить вероятностные характеристики решения дифференциальных уравнений, если известны вероятностные характеристики возмущений. Получить решение нелинейных уравнений методами корреляционной теории нельзя. Однако, если ограничиться процессами, обладающими специальными свойствами, можно получить решение и для нелинейных задач статистической динамики. К таким процессам относят марковские процессы, для полной характеристики которых достаточно знать только двумерные законы распределения.  [c.123]

Особенности механических задач теории надежности. Методы решения задач надежности существенно зависят от вида нагружения. Будем различать дискретное и непрерывное нагружения. Дискретные нагружения могут быть как однократными, так и многократными. Поведение системы при таких нагружениях может быть описано в рамках классической теории вероятностей и теории марковских цепей. Но, как правило, внешние воздействия представляют собой стационарные или нестационарные случайные процессы. Поведение системы при этих воздействиях, включая накопление повреждений в системе, также представляет собой случайный процесс. Надежность и долговечность механических систем при непрерывной эксплуатации может быть правильно понята, описана и рассчитана лишь на уровне теории случайных процессов. Понятие надежности нельзя рассматривать вне времени, в отрыве от понятия долговечности. Только опираясь на аппарат теории случайных процессов, можно получить решение задач о невыгоднейшем сочетании нагрузок, о законе распределения долговечности конструкций и т. д.  [c.169]


Развитый метод позволяет также (для определенного класса задач и случайных процессов) получить замкнутые уравнения для плотности вероятностей решения задач с учетом конечности времени корреляции случайных воздействий [18—23]. Это прежде. всего системы с флуктуациями параметров в виде процессов телеграфного типа и гауссовских марковских процессов. С помощью теории инвариантного погружения удается также исследовать и стохастические краевые задачи [24]. Другие методы и подходы к решению стохастических уравнений описаны в ряде обзорных работ, появившихся за последнее время (см., например, [25—27]).  [c.7]

Второй способ состоит в применении прямых методов решения стохастической задачи, сформулированной как задача вариационного исчисления. В этом случае приближенные выражения совместных плотностей вероятности задаются в явном виде, что позволяет для вывода моментных соотношений использоватй корреляционный и спектральный методы без привлечения теории марковских процессов.  [c.88]


Смотреть страницы где упоминается термин Теория вероятностей марковских процессов — Метод : [c.89]    [c.44]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.294 , c.295 , c.296 ]



ПОИСК



Вероятностей — Теория

Вероятности. Стр Вероятность

Вероятность

Процесс марковский

Теория Метод сил

Теория марковских процессов

Теория марковских процессов — Методы

Теория процесса



© 2025 Mash-xxl.info Реклама на сайте