Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам свойства с рением

Предварительные исследования по совместимости показали, что между волокном и матрицей в тугоплавких армированных волокнами жаропрочных сплавах возникают реакции легирования [50]. Также показано, что если реакции легирования возникают между матрицей и волокном, то свойства композита улучшаются. В результате был осуществлен ряд исследований для подбора пар материалов волокно — матрица, наиболее совместимых друг с другом. В [51] исследованы свойства длительной прочности при повышенных температурах (1093 и 1204 °С) для четырех проволок Т7М (молибден, 0,5% Т1, 0,08% 2г, 0,015% С) ЗВ (вольфрам, 3% рения) КР (вольфрам, 1% тория) и 21808 (промышленный вольфрам). Обнаружено, что проволоки 21808 и ЗВ были более совместимы с исследованными никелевыми сплавами, чем проволоки NF или Т2М. Овойства длительной прочности проволок в отсутствие материала матрицы были такие- же.  [c.277]


ВОЛОК. Образцы для испытаний диаметром 0,25 дюйма содержали 13 или 20% объема волокон и были составлены из четырех или пяти параллельных проволок (каждая диаметром 0,05 дюйм). По-видимому, проволоки из сплава вольфрам — 5% рения обладают более хорошими свойствами по сравнению с другими тугоплавкими. металлами. Если построить графики удельной длительной прочности для различных материалов (рис. 26), то видно, что только комбинация с вольфрамом, к которому добавлено 5% рения, дает существенное улучшение свойств композита.  [c.305]

Результаты, приведенные в табл. 1, выглядят оптимистично. Они показывают, что гладкие на субатомном уровне (по крайней мере в смысле рентгеновских свойств) пленки могут быть синтезированы. Очень малую шероховатость имеют пленки из углерода и сплава вольфрам—рений, которые являются аморфными. Несомненно, что идеальной поверхностью является атомно-гладкая поверхность кристалла, однако есть основания ожидать, что аморфные пленки также могут иметь шероховатость порядка атомных диаметров или даже меньше. Поэтому аморфные пленки будут чрезвычайно полезны для МИС со сравнительно большими толщинами слоев, а монокристаллические пленки — для МИС с малыми периодами < 15 А).  [c.441]

Разработаны условия для химического кобальтирования с применением гипофосфита и борсодержащих восстановителей, а также условия совместного восстановления никеля с такими металлами, как рений, вольфрам и другие при образовании соответствующих сплавов, включающих фосфор. Некоторые из этих покрытий обладают ценными магнитными свойствами [43].  [c.293]

К тугоплавким металлам относятся вольфрам, рений, тантал, молибден, ниобий. Некоторые их свойства приведены в табл. 14. Сплавы на основе этих металлов обладают максимальной жаропрочностью до 2500° С.  [c.348]

Сварка вольфрама. Вольфрам имеет две модификации — а и . Ниже температуры полиморфного превращения 903 К -фаза переходит в а-фазу с решеткой объемно-центрированного куба. Вольфрам устойчив в соляной, серной и других кислотах, в расплавленных натрии, ртути, висмуте. С азотом и водородом вольфрам не взаимодействует до температуры плавления. На воздухе устойчив до 673 К- Вольфрамовые сплавы содержат в небольших количествах такие легирующие элементы, как ниобий, цирконий, гафний, молибден, тантал, рений, окись тория. Основной целью легирования вольфрама является повышение его пластичности, так как технически чистый вольфрам при 293 К имеет относительное удлинение, близкое к нулю. Среди" тугоплавких металлов вольфрам имеет наиболее высокие следующие параметры температуру плавления, модуль упругости, коэффициент теплопроводности и низкую свариваемость. Для диффузионной сварки вольфрама в вакууме может быть рекомендован режим Т = 2473 К, р 19,6 МПа, /=15 мин, который обеспечивает свойства соединений, близкие к свойствам основного металла.  [c.155]


Тунгстен, как его называют в Америке, известный в Европе под названием вольфрам ,— металл с уникальными свойствами, благодаря которым его применяют при обработке резанием и штамповке других металлов, а также в условиях высоких температур. Он имеет самую высокую температуру плавления (3410°) и самое низкое давление пара среди остальных металлов. Вольфрамовая проволока имеет самый высокий предел прочности при растяжении и предел текучести до 420 кг1мм . Вольфрам — один из наиболее корроэионностойких материалов. По плотности он уступает лишь металлам платиновой группы и рению. После соответствующей обработки этот Металл становится упругим и пластичным. Его соединение с углеродом — самое твердое из известных веществ, содержащих металл.  [c.136]

Ниобий и его сплавы имеют важное значение в электронной и химической промышленности, а сплавы ниобия с оловом являются ценным сверхпроводящим материалом. Большую роль играет рений, его температура плавления 3180 °С, плотность в 3 раза болыпе, чем у железа, он немного легче осмия, платины и иридия. Рений обладает высоким электросопротивлением. Жаропрочность рения с вольфргамом и танталом сохраняется до температуры 3000 °С, сохраняются и механические свойства. Вольфрам и молибден при низких температурах очень хрупки, а в сплаве с рением сохраняют при этих температурах пластичность. Рений используют для производства сверхточных навигационных приборов, которыми пользуются в космосе, для получения торсионов — тончайших нитей, диаметр которых составляет несколько десятков микрометров, обладающих очень высокой прочностью. Проволока сечением в 1 мм выдерживает нагрузку в несколько килоньютонов.  [c.225]

Перечень исходных материалов, которые были использованы для создания автоэлектронных катодов, достаточно широк. Это, в первую очередь, тугоплавкие металлы вольфрам, молибден, рений, платина. Также широко исследовались автоэмиссионные свойства металлов переходных групп, таких, как хром, ниобий, гафний. Бесчисленное множество публикаций посвящено автоэмиссии и автокатодам из полупроводниковых материалов. Однако автокатоды из таких материалов не могут длительное время работать в условиях серийных приборов (р 10 -ь 10 мм рт. ст.) т. к. происходит разрушение микро-вытупов, определяющих автоэмиссию с рабочей поверхности катода.  [c.6]

При использовании преимуществ, обусловленных уникальными физическими и механическими свойствами рения при повышенных температурах, следует принимать во внимание, что металл сильно и быстро разрушаетсв D атмосфере кислорода, воздуха и в других окислительных средах, так как в Этом отношении он гораздо менее устойчив, чем ниобий, молибден, тантал или вольфрам [70]. ]Цеталл, легко изменяющийся в окислительной атмосфере, устойчив при повышенных температурах в атмосфере водорода и в других восстановительных и нейтральных средах, устойчив к действию соляной кислоты, не поддается коррозии при соприкосновении с морской вОдой и механически устойчив при электролитической эрозии 20].  [c.629]

Вольфрам представляет большой интерес для техники, как основа конструкционных материалов, работающих при температурах выше 2273К, Дисперсное упрочнение южет быть осуществлено карбидами, нитридами и оксидами. Присутствие дисперсных частиц стабилизирует структуру, повышает температуру начала рекристаллизации вольфрама и обеспечивает высокие механические свойства. Наиболее эффективно повышают прочностные свойства вольфрама дисперсные карбидьг Упрочнение карбидами применяют в сочетании с твердорастворным упрочнением за счет легирования рением, ниобием, танталом, молибденом.  [c.122]

Трой и Стевен [57] также занимались изысканием термопар. Они для работы при высоких температурах исследовали несколько термопар из тугоплавких и редких металлов. Эта работа по существу явилась продолжением работы Шульце, который в 1938 г. [58] предложил следующие термопары платина —платина +8% рения (до 1600°) родий—платина+ +8% рения (до 1800°) родий — родий -t-8% рения (до 1900°) иридий — иридий +10% рутения (до 2300°). Было установлено, что сплав платины с 8% рения при рекристаллизащ и делается хрупким. Трой и Стевен исследовали различные комбинации вольфрама, молибдена, тантала, платины, родия, иридия, а также сплавы из этих металлов и определяли их э. д. с. в нейтральной атмосфере. Они пришли к выводу, что оптимальными свойствами обладает вольфрам-иридиевая термопара, которая имеет высокую э. д. с. выше 1000°, незначительную э. д. с. при комнатной температуре и почти линейную градуировочную зависимость между 1000 и 2100°. Было обнаружено, что после выдержки при высоких температурах в атмосфере  [c.100]


Термопарыиз вольфрама и рения и их сплавов (ТВР) наиболее широко распространены. Они применимы только в нейтральной и водородной среде или вакууме. При наличии кислорода электроды окисляются уже при 600 °С. Насыщение углеродом нежелательно, так как образование карбидов вольфрама существенно искажает термоэлектрическую характеристику. В СССР нормализованы стандартом вольфрамрениевые термоэлектроды с содержанием рения 20 и 5 %. В совокупности они образуют термопару ТВР 5/20. Обусловленный технологическими трудностями разброс в значении термоэлектрических свойств термоэлектродов привел к необходимости создания трех номинальных статических характеристик (табл. 8.25—8.27). Они различаются допустимым отклонением в показаниях ПТ (табл. 8.29). Для диапазона температур от 1800 до 2500 С номинальная статическая характеристика ТВР 5/20 приведена в табл. 8.28, однако для этой области температур нет достаточного метрологического обеспечения. Из-за высокого содержания в вольфрам-рениевых сплавах примесей различные партии термоэлектродов значительно отличаются по термоЭДС, хотя в пределах каждой из партий термоЭДС может быть вполне стабильна.  [c.261]

Из работы [178] также следует, что в контакте с молибденом и вольфрамом эта же керамика проявляет значительно большую устойчивость взаимодействие практически отсутствует до 2000 °С. Что же касается рения, то этот материал с AI2O3 взаимодействует даже в меньшей степени, чем молибден и вольфрам. Применяется рений чаще всего не в чистом виде, а в виде сплавов с молибденом и вольфрамом. Рассмотренные тугоплавкие металлы довольно хорошо смачиваются медью, в то время как их окислы, наоборот, не смачиваются. Плохо смачивается и окись алюминия [182]. Эти свойства при выборе материала подложки для конструкции генераторов (и также конденсоров) необходимо было учитывать. Из проведенного выше анализа следует, что из металлов большой пятерки , применяемых в производстве изделий электронной техники, требованиям к материалу подложки генераторов наиболее полно отвечают молибден и рений.  [c.41]

ЖО Ропрочные сплавы на основе тугоплавких металлов. К тугоплавким металлам относятся вольфрам, рений, тантал, молибден, ниобий. Некоторые их свойства приведены в табл. 32. Сплавы на основе этих металлов обладают максимальной жаропрочностью — до 2500° С.  [c.259]

В XVIII в., подвергая химическому анализу множество горных пород и минералов, химики открыли хром, магний, марганец, молибден, никель, платину, вольфрам. В XIX в. тем же путем, а с 1859 г. также благодаря разработке Бунзеном и Кирхгофом спектрального анализа, обнаружили остальные металлы, встречаемые в недрах земли, кроме гафния, европия, лютеция, неодима, празеодима, протактиния, рения, самария и плутония, открытых в нашем столетии. Поискам успешно способствовала Периодическая система Д. И. Менделеева, заранее определявшая ожидаемые свойства новых элементов.  [c.8]

В элементарном состоянии и сплавах на собственной основе наиболее употребительны титан, вольфрам и молибден. Сплавы других элементов своеобразны по составу и свойствам. За рубе жом, например, применяют для камер сгорания и обшивки ра кет сплав тантала с 8% вольфрама и 2% гафния, который со храняет прочность в пределах температур от —260 до +2000° С подобные, на первый взгляд неожиданные комбинации нередки По другим данным, для аналогичных целей служат сплавы тан тала, ниобия, молибдена и рения, также весьма жаропрочные  [c.320]

Все элементы, указанные в табл. 15.2, обладают прочностью на растяжение, достаточной для использования их при температуре выше 5000° К, если деформации активной зоны реактора достаточно малы однако сомнительно, чтобы карбиды этих элементов оказались пригодными для работы в условиях растяжения при высоких температурах. Для конструкций активной зоны реакторов, в которых нагрузки в основном сжимающие, потенциально пригоден любой из этих материалов. Величина поперечного сечения захвата тепловых нейтронов интересна при сравнении свойств материалов, используемых преимущественно в тепловых реакторах. Важным параметром, характеризующим замедление нейтронов до тепловых, является также значение интеграла резонансного поглощения [14]. Первый из этих параметров характеризует степень поглощения тепловых нейтронов веществом тепловыделяющего элемента по сравнению с поглощением веществом самого горючего второй параметр является мерой способности к поглощению быстрых нейтронов. Заметим, что величины макроскопического сечения поглощения тепловых нейтронов вольфрама и тантала приблизительно в 3000 раз, а рения в 1500 раз больше, чем соответствующая величина для графита. Кроме того, вольфрам, рений и тантал имеют большое количество резонансов в области быстрых нейтронов, в результате чего интеграл резонансного поглощения достигает таких высоких значений, которые практически не позволяют (с течки зрения требования критической массы) считать эти материалы пригодными для использования их в потоке быстрых нейтронов. С точки зрения нейтронной физики эффективное использование любого из этих металлов требует блочной структуры замедлителя, чтобы замедление нейтронов до тепловых энергий происходило при незначительном поглощении надтепловых нейтронов. Таким образом, выбор конструкционного материала для тепловыделяющих элементов и геометрия активной зоны реактора оказываются взаимосвязанными. С этой точки зрения рений, вольфрам и тантал являются лучшими материалами для активных зон кассетного типа с замедлителем, в то время как графит, имеющий низкий атомный вес и являющийся поэтому хорошим замедлителем, может использоваться в гомогенных смесях как в тепловых реакторах, так и в реакторах на быстрых нейтронах.  [c.518]


Смотреть страницы где упоминается термин Вольфрам свойства с рением : [c.210]    [c.136]    [c.629]   
Производство электрических источников света (1975) -- [ c.54 ]



ПОИСК



Вольфрам

Вольфрам—Свойства

Рений

Рений Свойства

Рений-вольфрам

Реньи

Реньо



© 2025 Mash-xxl.info Реклама на сайте