Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы для глубокого сверления

Элементы 101, 106 Сверла спиральные для глубокого сверления двустороннего резания 120—125  [c.801]

Сверла. По конструкции сверла классифицируют на спиральные, кольцевые, для глубокого сверления и центровочные. Наибольшее распространение получили спиральные сверла с коническими и цилиндрическими хвостовиками. Части и элементы спирального сверла приведены на рис. 137. Спиральные сверла изготовляют диаметром от 0,25 до 80 мм.  [c.241]


Основные элементы инструментов для глубокого сверления и растачивания  [c.34]

Инструменты для глубокого сверления и растачивания обладают большой общностью они имеют единые принципы построения, одинаковый состав элементов. Применяемые на практике схемы расположения режущих лезвий относительно оси и распределение нагрузки между лезвиями, а также принципы базирования инструментов являются общими для тех и других и служат основой создания конкретных конструкций инструментов. Знакомство с этими общими принципами необходимо для понимания таких важных явлений, сопровождающих процессы глубокого сверления и растачивания, как вибрации, образование увода оси и огранки и т. п.  [c.34]

Ввиду большой глубины обрабатываемых отверстий инструмент для глубокого сверления и растачивания имеет большую длину. Для удобства изготовления и эксплуатации его выполняют составным по длине, используя разъемное соединение двух основных частей — режущего и вспомогательного инструментов. Режущий инструмент выполняется в виде так называемой сверлильной (расточной) головки, устанавливаемой на конце вспомогательного инструмента в виде стебля (борштанги) На рис. 2.1 в качестве примера показаны эти части у инструмента для глубокого сверления. Головка (рис. 2.1, а) состоит из корпуса 2 с режущими 3 и направляющими 1 элементами. Корпус имеет посадочные поверхности П для соединения со стеблем. Стебель (рис. 2.1, б) обычно имеет вид трубы, на одном конце которой выполнены соответствующие посадочные поверхности П для соединения с головкой, а на другом — посадочные поверхности для соединения со станком. Часто стебель выполняется составным по длине.  [c.34]

Режущие элементы. Основным элементом инструментов является режущий элемент 3, который служит для срезания стружки с помощью режущего лезвия. Инструменты для глубокого сверления и растачивания имеют некоторые особенности в расположении лезвий и распределении нагрузки между ними. В дальнейшем при рассмотрении режущих элементов будем пользоваться терминами, установленными ГОСТ 25762—83, а также некоторыми дополнительными приведенными ниже терминами.  [c.34]

Основные типы направляющих элементов, применяемых в инструментах для глубокого сверления и растачивания  [c.56]

По конструкции различают сверла спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктивным элементам относятся диаметр сверла D угол режущей части 2ф (угол при вершине) угол наклона винтовой канавки м геометрические параметры режущей части сверла, т. е. соответственно передний а и задний y углы и угол резания б, толщина сердцевины (или диаметр сердцевины) Ф, толщина пера (зуба) Ь ширина ленточки / обратная конусность форма режущей кромки и профиль канавки сверла длина рабочей части /о общая длина сверла L.  [c.206]


На операциях глубокого сверления и растачивания СОЖ должна выполнять ряд функций отводить стружку из зоны резания и транспортировать ее по отводным каналам, уменьшать силы резания и трения между направляющими элементами и поверхностью отверстия, отводить тепло, образующееся в процессе резания и трения. Для этого СОЖ должна иметь соответствующие свойства.  [c.7]

В качестве критерия транспортабельности стружки секторного типа рекомендуется принимать наибольший размер I элемента стружки (см. рис. 3.1), определяемый в зависимости от длины /с и ширины Ьа стружки I = >//с + Ь1. Принимая размер I, например, при кольцевом сверлении, равным ширине кольцевой полости для отвода стружки бо. можно найти предельно допустимую длину элемента стружки /с. пред = /бб — Ы. По численному значению /с. пред. заданным значениям параметров и, 5о и высоты порожка к 01 = 0,5-=-0,7 мм) из формулы вида (3.1) можно определить требуемую ширину порожка Ь, при которой получается стружка требуемой длины 1 = /с.пред- В табл. 3.2 представлены полученные для ряда сталей зависимости длины стружки от размеров порожка и режима резания. Многолетняя практика определения размеров порожка при точении на токарном станке показывает, что они достаточно близки к размерам порожка, обеспечивающим стабильное дробление стружки при глубоком сверлении.  [c.77]

Инструменты для сплошного глубокого сверления различаются способом отвода стружки и расположением режущ,их лезвий относительно оси и по окружности. Тип направляющих элементов хотя и оказывает существенное влияние яа работу инструмента, но применительно к инструментам для сплошного сверления имеет подчиненное значение, так как выбирается с учетом расположения режущих элементов. Основные разновидности инструментов приведены в табл. 9.1.  [c.177]

Наиболее широкое применение в настоящее время имеют трубчато-лопаточные (группа 1а) и лопаточные сверла (группа 2а). Применяются и шнековые сверла (группа 16), которые позволяют сверлить глубокие отверстия с отношением I йо до 10—15 на универсальных станках. Эти сверла не относятся к инструментам глубокого сверления, так как при работе ими стружка отводится не потоком СОЖ, а с помощью винтовых канавок. Приведены же они в табл. 9.1 для того, чтобы показать все инструменты, применяемые в настоящее время для сплошного сверления глубоких отверстий. Эжекторные сверла (группа За) в связи с организацией их централизованного изготовления могут получить широкое применение. Сверла с М-образной заточкой (группа 26), имеющие режущую часть из быстрорежущей стали, в настоящее время из-за малой производительности практически не применяются. Преимущества и недостатки каждой разновидности инструмента, приведенной в таблице, определяются совокупностью преимуществ и недостатков, связанных с их отдельными отличительными признаками способом отвода СОЖ, расположением режущих лезвий и распределением нагрузки между ними, типом направляющих элементов, наличием определенности базирования, уравновешенности и т. д. (см. гл. 1 и 2). Ниже рассматривается конструкция, геометрия заточки и особенности технологии сверления применяемыми в настоящее время инструментами (из указанных в табл. 9.1).  [c.177]

Характеристика применяемых головок. В настоящее время применяют в основном головки для скоростного сверления, оснащенные твердосплавными режущими и направляющими элементами. Головки различаются способом отвода стружки, числом режущих лезвий, а также числом жестких неподвижных направляющих и их угловым расположением относительно друг друга и режущего лезвия. Имеется различие и в форме режущего лезвия — в схеме резания. При сверлении глубоких отверстий диаметром 50— 200 мм рекомендуют применять однолезвийные сверлильные головки [14, 26, 59].  [c.228]

Конструктивно сверла подразделяют на спиральные с прямыми канавками перовые для глубоких отверстий для кольцевого сверления центровочные специальные комбинированные. Конструктивные элементы сверла (рис. 1.7) диаметр О сверла угол 2ф режущей части угол ш наклона винтовой канавки, передний угол у задний угол а угол ф резания ширина I ленточки, длина / рабочей части общая длина /г- В зависимости от диаметра сверло может иметь как цилиндрический, так и конический хвостовик для крепления сверла в патроне или в шпинделе станка.  [c.12]


На операциях глубокого сверления (растачивания) в зависимости от диаметра и длины обрабатываемого отверстия расход СОЖ обычно составляет 0,001—0,009 м /с при р = 10 0,5 МПа. Это значит, что, для указанных диапазонов р п Q затраты мощности на прокачивание СОЖ могут составлять 6—10 кВт и в ряде случаев превышать затраты мощности на резание, поэтому снижение затрат мощности на подвод СОЖ и отвод стружки очень важно. Одним из путей снижения затрат мощности является применение маловязких СОЖ, что положительно сказывается также на ее очистке (фильтрации) и снижении ее потерь в виде отходов вместе со стружкой. Однако выбирать вязкость СОЖ исходя только из снижения затрат мощности и сокращения ее потерь со стружкой не следует, так как она имеет широкое влияние на процесс обработки (в частности, оказывает благотворное влияние на условия работы направляющих элементов). Так, исследовани5Кми установ-  [c.7]

При исследованиях причин образования уводов оси возникает необходимость измерения поперечных колебаний заготовки, так как они вызывают биение поверхности обработанного отверстия, на которую базируется инструмент, и поэтому являются одной из причин образования увода оси. Для измерения поперечных колебаний заготовки используют различную виброизмерительную аппаратуру. В частности, успешно применяется ВИА6-5МА — малогабаритная, шестиканальная аппаратура с индуктивными датчиками. В комплект аппаратуры входят полупроводниковый блок питания, генераторно-усилительный блок и различные по назначению датчики. Применительно к условиям глубокого сверления и растачивания для измерения вынужденных поперечных колебаний заготовки с частотой ее вращения до 50, Гц можно использовать датчик относительных перемещений ДП-2, конструкция которого приведена на рис. 5.2, а, а электрическая схема — на рис. 5.2, б. Датчик позволяет измерять амплитуды от О до 12 мм и частоту от О до 120 Гц. Нелинейность амплитудных характеристик не превышает 5 %. Датчик имеет корпус в виде пустотелого цилиндра 2, внутри которого расположена катушка с обмотками 3. Чувствительным элементом является стержень 1 (якорь) с оболочкой 4 из электротехнической стали, который может свободно перемещаться вдоль отверстия катушки. При перемещении стержня изменяется взаимоиндуктивность первичных 1 1 и Щ и вторичных W и W2 катушек, что приводит к изменению силы выходного тока. Токи вторичных обмоток выпрямляются и их разность, проходя через специальный фильтр в аппаратуре ВИА6-5МА, поступает на нагрузку, в качестве которой используется шлейф осциллографа. Совместно с данной аппаратурой может быть использован любой осциллограф с сопротивлением шлейфов 6—8 Ом. При отклонениях от указанного сопротивления  [c.112]

Рабочая часть выполняется в виде стальной головки 1 (рис. 9.12, а), припаиваемой к стеблевой части 2 с сечением, аналогичным сечению по 1-му варианту. На головке закрепляются постоянно пайкой режущий элемент 5 и направляющие 3 п 4, устанавливаемые в специально подготовленные гнезда. Для пайки используют припой ПР МНМц 68-4-2 (ТУ 48-21-476—79) или латунный припой Л63. Головка сочленяется со стеблем по клиновой поверхности (как в 1-м варианте). Экономически целесообразно применять этот вариант при глубоком сверлении отверстий диаметром от 8 до 30 мм с Udo > 20.  [c.190]

Как правило, в промышленности используют трехзубые зенкеры, работающие на растяжение, с передним или задним направлением соответственно по поверхности обрабатываемого или обработанного отверстия. Для обработки отверстий диаметром 8—30 мм после операции глубокого сверления рекомендуется применять зенкеры по ОСТ 3—5869—85 одновременно с передним и задним направлением. Приведенный на рис. П.П трехлезвийный зенкер имеет переднее направление в виде текстолитовой втулки 4 и заднее — в виде коротких текстолитовых направляющих 1. Между передней и задней направляющими расположены твердосплавные режущие элементы 2, впаянные или вклеенные в.пазы корпуса 3.  [c.254]

Спиральные сверла с конической заточкой просты в эксплуатации и используются главным образом для сверления глубоких сквозных отверстий, к которым не предъявляют высоких требований, а также для сверления глухих отверстий под шканты, шурупы и т. п. Для получения отверстий высокого качества на входе и выходе сверла, особенно при сверлении поперек волокон, следует применять спиральные сверла с центром и подрезателями. Эти сверла имеют пять режущих элементов две главные режущие кромки, два подрезателя и направляющий центр. Направляющий центр предназначен для повышения точности сверления и выступает над главными режущими кромками в зависимости от диаметра сверла на 2,5—5 мм. Подрезатели перерезают волокна древесины перед главными режущими кромками и обеспечивают более высокое качество сверления. Подрезатели выступают над главными режущими кромками на величину  [c.221]

Низкая жесткость сверл обуславливается наличием канавок для отвода стружки и значи--тельной их длиной. Большая длина сверл вызвана необходимостью крепления инструмента за пределами обработанного отверстия, что связано с удлинением крепежной части и с увеличением общей длины сверла. В технологической системе сверло является наиболее слабым и определяющим жесткость элементом, что следует учитывать при назначении режимов резания. В связи с указанным особенно больщие трудности возникают при сверлении глубоких отверстий, для обработки которых следует применять специальные сверла.  [c.193]


Смотреть страницы где упоминается термин Элементы для глубокого сверления : [c.364]   
Справочник металлиста Том 3 Изд.2 (1966) -- [ c.0 ]



ПОИСК



Сверление

Сверление 445 — 447 глубокое

Сверление Элементы



© 2025 Mash-xxl.info Реклама на сайте