Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Михеева формула

Михеева формула 144, 147 Многоступенчатые компрессоры—см. Компрессоры многоступенчатые  [c.543]

Для теплотехнических расчетов наибольший интерес представляет средняя по периметру цилиндра теплоотдача. Рекомендуемые М. А. Михеевым формулы для определения средней теплоотдачи цилиндров в потоке жидкостей и газов имеют вид  [c.337]

Миниметры 4— 13, 27 Миноры определителей 1 — 115 Михеева формула 2—114, 147 Мнимые эллипсоиды 1 — 255 Многозначные функции I — 99 Многоугольник сил I — 353 Многоугольники — Площадь 1 — 106  [c.439]


Опытные данные по средним коэффициентам теплоотдачи в трубах и каналах при турбулентном режиме течения теплоносителя [c.340]

Турбулентное движение (Re, >- 10 ). Для расчета среднего коэффициента теплоотдачи а используют формулу М. А, Михеева, полученную им на основании обобщения результатов многих экспериментов,  [c.189]

На рис. 2.36 приведены результаты обобщения опытных данных при турбулентном пограничном слое, полученные М. А. Михеевым. Приведенные формулы действительны при постоянной температуре теплообменной поверхности. За расчетную длину пластины / принимают длину обогреваемого участка.  [c.131]

При капельных жидкостях пользуются приводимой ниже формулой М. А. Михеева, справедливой при / < = 1 10 - -5-10 и при Рг= =9,6-2500  [c.164]

В общем случае для тел любой формы и размера, расположенных горизонтально и вертикально, для капельных жидкостей и газов может быть использована формула М. А. Михеева (рис. 13-10)  [c.170]

В целях удобства сопоставления результатов расчета по соотношениям (8.10), (8.13) и (8.14) формула М. А. Михеева представлена здесь в виде зависимости Sto.K=/(Re, Рг). Переход от зависимости Nu6.K = f(Re, Рг) к зависимости (8.14) выполнен на основе известного соотношения Nu=Sl-Re-Pr.  [c.248]

Характер свободного движения около горячих горизонтальных труб представлен на рис. 10-6. При прочих равных условиях чем больше диаметр труб, тем вероятнее разрушение ламинарного течения. У труб малого диаметра разрушение ламинарного течения может происходить вдали от трубы. Для расчета средних коэффициентов теплоотдачи при свободном ламинарном движении около горизонтальных труб может быть использована формула И. М. Михеевой [Л. 128]  [c.238]

Как и при ламинарном движении, в основу формул для вычисления коэффициента сопротивления трения положены формулы для изотермического движения. Влияние неизотермичности на сопротивление трения можно учитывать при помощи поправки, предложенной М. А. Михеевым (Ргс/Ргж)1/з [Л. 124]. Тогда формула для расчета коэффициента трения при неизотермическом движении запишется так  [c.461]

Для ламинарного режима течения величину коэффициента Михеева можно рассчитать по формуле >  [c.54]

Для расчета величины радиальной составляющей силы резания использована формула, предложенная Л. Л. Михеевой [3].  [c.59]

Если приближенно теплообмен в низкотемпературных участках регенератора, где не сказывается кинетика химической реакции, рассчитывать по формулам Михеева, а сопротивление — по зависимости = 0,184 Ке- , то алгоритм расчета критерия качества (функции цели) для оптимизации параметров низкотемпературного участка регенератора имеет следующий вид.  [c.187]


Для сравнения на фиг. 3 нанесена линия, соответствующая формуле Михеева [1] для круглых труб  [c.48]

Расчет теплоотдачи вертикальных и горизонтальных труб и проволок, вертикальных плит и шаров при естественной конвекции жидкости и газа в большом объеме может быть произведен по формуле М. А. Михеева [22]  [c.147]

Коэффициент теплоотдачи от стенки трубки к кипящему рассолу по формуле М. А. Михеева  [c.281]

Определение толщины изоляции при заданной тепловой потере производится по формуле Н, Н. Михеевой  [c.39]

Механическое напряжение, единицы 10 Михеевой Н. Н. формула 39 Монель-металл 30S Мощность, единицы 10  [c.357]

Одной из первых работ по теплоотдаче в пучках при продольном наружном обтекании труб, соответствующем рассматриваемому случаю, было исследование, описанное в [Л. 43] и проведенное на двух пучках с относительными шагами sld—, b и 2,0 при теплообмене с воздухом. Позднее были выполнены исследования [Л. 44] на пучке с относительным шагом 1,22 при теплообмене с водой. Авторы пришли к выводу, что для расчета теплоотдачи в пучках с продольным обтеканием труб применима формула Михеева, выведенная для случая теплоотдачи при движении жидкости в круглых трубах  [c.216]

В области 1 10 Gr Рг 5 10 опытные данные удовлетворительно описываются эмпирической формулой М. А. Михеева [5]  [c.285]

Турбулентный режим. Расчет теплоотдачи при турбулентном течении жидкости в круглых трубах производится по формуле М. А. Михеева [Л. 27]  [c.298]

Для функции a. = a. W) была получена зависимость, близкая к формуле М. А. Михеева [1].  [c.174]

Численные значения за пределами начального участка, определенные вышеуказанным способом для изотермических условий, совпадают с расчетом по формуле Блазиуса. Влияние теп-лового потока на гидравлическое сопротивление определено из опытов, проведенных при прочих ра/вных условиях, но при разных тепловых потоках. Установлено, что это влияние достаточно хорошо учитывается отношением критериев Прандтля Рг а /Рг/х в степени Уз (рис. 1), что согласуется с выводами М. А. Михеева [Л. 2]. Таким образом, коэффициент гидравлического сопротивления для стабилизированного турбулентного течения в неизотермических условиях определяется зависимостью  [c.415]

Ге=. -ение зг оль плоской поверхности. Опыты го теплоотдаче п. аст1шы, обтекаемой про Ю. ьным потоком воздуха (ф ИГ. 2-23), приводят к предложенной М. А. Михеевым формуле  [c.121]

Для оценочных расчетов теплоотдачи при турбулентном режиме в инженерной практике широко цспользует-ся формула М. А. Михеева  [c.52]

Для учета температурной зависимости вязкости капельной жидкоети в формулы для расчета теплоотдачи вводят поправку (Prж/Pr )° 2 предложенную М. А. Михеевым используются также поправки вида (рж/рс) .  [c.376]

Теплота от слоя конденсата к йарогенерйрующим трубам в нижней части греющей секции передается в условиях естественной конвекции, поэтому коэффициент теплоотдачи определяем по формуле М. А. Михеева  [c.419]

Тогда, вводя дополнительно поправку е = (Ргж/Ргс)°- на переменность физических свойств капельных жидкостей, получим формулу, предлохсенную М. А. Михеевым [Л. 125]  [c.215]

По Михееву, ввиду приближенности формул (10-18) и (10-19) для всей области значений аргументов (GrPr) 10 можно принять зависимость  [c.241]

М. А. Михеевым, О. С. Федынским, В. М. Дерюгиным и В. И. Петровым [Л. 127] для расчета средних коэффициентов теплоотдачи при вынужденном турбулентном движении тяжелых и щелочных металлов, а также их сплавов в окисленных стальных трубах без защиты с помощью нейтральных газов была получена формула  [c.244]

Как видно, наблюдается расхождение между величиной деформации, замеряемой на детали, и величиной, рассчитанной по предложенной формуле 31. Эта разница может быть объяснена лишь недостатком эмпирической формулы, предложенной для определения сил. Сила Ру, которая замерялась Михеевой, видимо, меньше истинного радиального усилия, имеющего место при протягивании втулкообразной детали.  [c.64]

Алгоритмы расчета критериев качества Если при тепловом расчете конденсатора принять следующие допущения 1) коэффициент теплоотдачи при конденсации соответствует зависимости Нуссельта 2) теплообмен и сопротивление при турбулентном течении воды определяются формулой Михеева и зависимостью = 0,184 Re- 3) перегрев пара и переохлаждение конденсата включены в эффективную теплоту конденсации А/г 4) при вычислении среднелогарифмического температурного напора температура в конденсаторе принимается равной температуре насыщения, то алгоритм для расчета критерия качества при оптимизации параметров конденсатора АЭС с теплоносителем N264 (конденсация на внешней поверхности труб) имеет следующий вид.  [c.182]


Область чисел Рейнольдса Renpламинарному течению с поперечной циркуляцией, появляющейся вследствие кривизны канала. Для теплоотдачи в этом случае удовлетворительные результаты дает формула Михеева (см. п. 2.6.3 кн. 2 настоящей серии). Коэффициент трения я вычисляется по эмпирическому соотношению, которое хорошо согласуется с экспериментом при 13,5<К<5000  [c.272]

Для приближенных расчетов в области (GrPr)/>10 вместо формул (2—3) и (2— 4) М. А. Михеевым предложена зависимость  [c.22]

Такой метод, конечно, следует считать приближенным. При ядерном кипении в большом объеме М. А. Михеевым и С. С. Ку-тателадзе предложены расчетные формулы для определения коэффициента теплоотдачи  [c.132]

Сравнение экспериментальных данных, полученных автором, с результатами расчетов по формулам С. С. Кутателадзе, М. А. Михеева, Тадеуша, Г. К- Гончаренко свидельствуют о ненадежности вышеприведенных выражений для расчета теплоотдачи при специфических условиях теплообмена в вертикальнотрубных глубоковакуумных испарителях морской воды. Это побудило автора на основании исходных теоретических уравнений, изложенных в 10, и экспериментальных зависимостей, описанных в 11, рекомендовать расчетные уравнения для определения коэффициента теплоотдачи с учетом зависимости этой сложной величины от специфических условий работы испарительных установок данного типа р, Н, ст) при обычном и форсированном режимах их работы.  [c.157]

Расчетные формулы, которыми пользовались до сих пор при определении коэффициентов теплоотдачи поперечно-обтекаемых трубчатых поверхностей, установлены на основе обобщенной обработки экспериментальных данных различных исследователей, полученных при неодинаковых температурных условиях. При этом, как указано выше, неудачный способ учета температурного фактора приводил к ошибкам при установлении влияния геометрнческнх характеристик трубных пучков. Исключением являются лишь формулы М. А. Михеева и Д. А. Литвинова [Л. 35], которые не содержат этой ошибки. Однако после опубликования их появился ряд новых экспериментальных данных (в частности, по тесным пучкам), которые эти формулы не учитывают. Поэтому возникла необходимость разработать новые обобщенные расчетные формулы.  [c.73]

Результаты опытов с гладкими и шероховатыми трубами, представлены на рис. 2-7, где по оси абсцисс отложены значения Ig(Gr-Pf) , а по оси ординат Ig и пределы отношения к а . причем значения ра"ссчитаны по обобш енной зависимости Михеева [Л. 71 ], формула (2-11).  [c.73]

Достоверность полученных данных подтвердилась при-сопоставлении их с результатами опытов по радиационно-кондуктивному методу и литературными данными. На рис. 3-17 условные обозначения в и г соответствуют данным Хрусталева [Л. 120] для натрубных загрязнений различных топлив и сажи при t = 20° С. При экстраполяции до температуры 20°С кривой 1, характеризуюш,ей отложения ПЖ с большим содержанием углерода, их степень черноты оказывается такой же, как и у сажи. (Аналогичные данные приведены для сажи в книге Михеева, [Л. 71 ] е = 0,95 при t - 40—270° С.) При экстраполяции до / = 20° С кривой 2, относящейся к обезуглероженному золовому слою, величина оказывается -такой же, как и для натрубных загрязнений, исследованных Хруста-левым. (Следует отметить, что значения 63, найденные. радиационно-конвективным методом, находятся в пределах 1 >> 63 > 83. мин> где величИ на 63. ин определена методом калориметрирования в топке по формуле (2-9) и показана на рис. 3-6.)  [c.112]

При движении тяжелых металлов и их сплавов, а также технически чистых истинных металлов и их сплавов по обычным техничеаюим трубам круглого сечения следует пользоваться формулами (4-6) и (4-6а) М. А. Михеева и его сотрудников.  [c.219]


Смотреть страницы где упоминается термин Михеева формула : [c.54]    [c.645]    [c.144]    [c.176]    [c.419]    [c.676]    [c.218]    [c.441]    [c.195]   
Справочник машиностроителя Том 2 (1955) -- [ c.114 , c.144 , c.147 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.114 , c.144 , c.147 ]



ПОИСК



Михеев

Формула Базена Михеева



© 2025 Mash-xxl.info Реклама на сайте