Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкционные титановые сплавы

Ротор вентилятора в сборе (I и II ступени) показан на рис. 193. Максимальный диаметр ротора составляет 2360 мм. Лопатки первой ступени имеют длину более 530 мм н изготовляются методом прецизионной штамповки на готовый размер. Лопатки второй ступени из-за большой длины (790 мм) не могут изготовляться прецизионным методом и штампуются с припуском на механическую обработку. Диски и лопатки вентилятора и компрессора изготовлены из сплава Ti—6AI—4V (ВТ6), который до сих пор является в США основным жаропрочным и конструкционным титановым сплавом.  [c.431]


Удельные усилия изотермической осадки конструкционных титановых сплавов [53]  [c.156]

КОНСТРУКЦИОННЫЕ ТИТАНОВЫЕ СПЛАВЫ  [c.207]

В последнее время разработано новое направление в создании высокопрочных и жаропрочных конструкционных титановых сплавов на основе трехфазной структуры а- и Э-твердых растворов и интерметаллидного дисперсионного упрочнения.  [c.67]

Титан — тугоплавкий металл [температура плавления (1665 5) С], плотность 4500 кг/м . Временное сопротивление чистого титана = 250 МПа, относительное удлинение б =70 %, он обладает высокой коррозионной стойкостью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей. Поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40 %. Одпако титан имеет низкую жаропрочность, так как при температурах выше 550— 600 °С легко окисляется и поглощает водород. Титан хорошо обрабатывается давлением, сваривается, из него изготовляют сложные отливки, но обработка его резанием затруднительна.  [c.19]

Сочетание прочности, легкости, термостабильности и коррозионной стойкости делает титановые сплавы превосходным конструкционным материалом, особенно когда конструкции работают в широком температурном диапазоне. В сверхзвуковой авиации, где вследствие аэродинамического нагрева температура оболочек достигает 500 —600°С, титановые сплавы используют для изготовления обшивок и силовых элементов. Благодаря малой плотности и хладостойкости иг широко применяют в космической технике. Из них изготовляют детали, подверженные высоким инерционным нагрузкам, в частности скоростные роторы, напряжения в которых прямо пропорциональны плотности материала. Температуростойкие титановые сплавы применяют для изготовления лопаток последних ступеней аксиальных компрессоров и паровых турбин. Высокая коррозионная стойкость при умеренных температурах обусловливает применение титановых сплавов в химической и пищевой промышленности.  [c.188]

Безусловные достоинства титановых сплавов — высокая стойкость к общей коррозии, локальным видам коррозионного разрущения в морской воде в сочетании с высокой механической прочностью, малой по сравнению со сталью плотностью, и др. делают титан и его сплавы весьма перспективным конструкционным материалом для ответственных морских сооружений. Титан не лишен некоторых недостатков, к которым относится его низкая стойкость к биологическим формам коррозии, а также его способность интенсифицировать коррозию других металлов, находящихся с ним в контакте.  [c.26]


Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.  [c.469]

Значение Е для некоторых конструкционных материалов (Н/мм , МПа) таково для сплавов па основе железа Е = 2 10 для титановых сплавов / = 1 10 для алюминиевых сплавов Е = 0,78 10.  [c.71]

Наиболее распространен из конструкционных титановых сплавов термически упрочняемый сплав ВТ6, обладающий при высокой прючности хорошей коррозионной и эрозионной стойкостью. Для работы при повышенных температурах наиболее широко используют сплав ВТ5-1. Сплавы ОТ4, ВТ4 повышенной пластичности применяют для изготовления листов и лент.  [c.189]

Таким образом, необходимо отметить, что явление холодной ползучести, отя и требует определенного внимания, но не может рассматриваться в качестве отрицательной характеристики конструкционных титановых сплавов по ряду причин. Действительно, при коэффициенте запаса 1,5 (минимальный для машиностроения) рабочие напряжения составляют 0,7 ia, т. е. близки к условному пределу ползучести и деформация ползучести ничтожно мала (--1% за 100 000 ч). При коэффициенте запаса 2 СТрад = 0,5(1 и, в частности, на сплаве Ti—6А1—2Nb—ITa—0,8Мо накопленная деформация не достигает 0,3% за 30 лет [9]. Следовательно, даже при минимальных запасах прочности явление ползучести в конструкциях не реализуется. Следует учитывать, что в плоском напряженном состоянии, а также в результате наклепа или поверхностной пластической деформации сопротивление ползучести увеличивается. Наконец,, важным обстоятельством является то, что титан, а-сплавы, отожженные а + р-сплавы не охрупчи-ваются под напряжением. При ползучести образец разрушается после накопления такой деформации, при которой он разрушается при испытании на разрыв. Поэтому на основании известных значений б. If, 6 , и т. п. долговечность элементов конструкций надежно прогнозируется путем несложных расчетов.  [c.129]

В серию входят КОНСТРУКЦИОННЫЕ ТИТАНОВЫЕ СПЛАВЫ Н АРОПРОЧНЫЕ ТИТАНОВЫЕ СПЛАВЫ ПЛАВКА И ЛИТЬЕ ТИТАНОВЫХ СПЛАВОВ ПОЛУФАБРИКАТЫ ИЗ ТИТАНОВЫХ СПЛАВОВ МЕТАЛЛОГРАФИЯ ТИТАНОВЫХ СПЛАВОВ  [c.2]

Учеными МАТИ - Российского государственного технологического университета им. К. Э. Циолковского разработан биологически и механически совместимый спонгиозоподобный слоистый композиционный материал ( СПС-ТИТАН ) на основе конструкционного титанового сплава ВТ6 и поверхностно структурированного сплава ВТ 1-0 с регламентированной пористостью для изготовления компонентов эндопротезов тазобедренного сустава (рис. 3.8).  [c.212]

При термической обработке титановых сплавов в их структурё могут возникать метастабильиые фазы о, а" и со мартенситного типа, из них и-фаза наряду с высокой твердостью отличается большой хрупкостью, поэтому присутствие ее в конструкционных титановых сплавах весьма нежелательно.  [c.531]

Силицирование применимо также как способ защиты титана. Жаростойкость конструкционных титановых сплавов при 1000 °С путем силицирования повышается до уровня нихромовых сплавов. Диффузионное силицидное покрытие на титане слагается из TisSia и TiSia [210].  [c.143]

В этот период наша металлургическая промышленность располагала разработанными в ВИАМе высокопластичными титановыми сплавами 0Т4-1 и 0Т4, жаропрочным конструкционным титановым сплавом ВТ20 с гарантированным уровнем прочности 900-950 МПа. Эти сплавы для ряда деталей не могли полностью заменить алюминиевые сплавы по своей весовой эффективности. Необходим был титановый сплав с более высокой прочностью. В ВИАМе был разработан титановый сплав ВТ22 нового класса (переходного) с прокаливаемостью в сечениях до 200 мм, обеспечивающий предел прочности 1100-1300 МПа.  [c.46]


Для сталей высокой статической прочности (ав> >100 кгс1мм ), алюминиевых и титановых сплавов характеристики Pft и Pft оказываются существенно ниже, чем для малоуглеродистых конструкционных сталей низкой и средней прочности. В связи с этим температурные зависимости критических значений коэффициентов интенсивности напряжений для этих металлов менее выражены, чем для конструкционных сталей.  [c.43]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

К тугоплавким сплавам относятся сплавы на основе титана, вольфрама, молибдена, ниобия, ванадия. Эти сплавы имеют высокую температуру плавления (1700...3500 °С) и отличаются повышенной прочностью при высоких температурах. Как конструкционный материал чаще используют титановые сплавы. Для фасонных отливок применяют сплавы ВТ1Л, ВТ5Л, ВТ6Л, ВТЗ-1Л и др. Литейные свойства титановых сплавов характеризуются малым интервалом температур кристаллизации и высокой химической активностью по отношению к окружающей среде и формовочным материалам.  [c.49]

Рассмотрены различные типы корроэионностойких титановых сплавов. Приведена подробная коррозионно-электрохимическая характеристика этих сплавов. Показаны области применения титановых сплавов и обосновано большое значение этого нового конструкционного корр озионностойкого материала для развития современной техники.  [c.33]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]

На рис. 72 показано влияние коррозионной среды на малоцикловую усталость стали и титановых сплавов. Если степень этого влияния на циклическую долговечность стали и ряда других конструкционных материалов увеличивается со снижением уровня амплитуды напряжений (с возрастанием длительности пребывания в среде), то для титановых сплавов наблюдается обратная картина чем ниже амплитуда напряжений, тем меньше влияет среда. При снижении амплитуды напряжений до уровня, при котором в вершине надреза локальные деформации не превышают 2е. —суммарная деформация, возникающая при напря-  [c.118]


Смотреть страницы где упоминается термин Конструкционные титановые сплавы : [c.5]    [c.156]    [c.11]    [c.411]    [c.291]    [c.124]    [c.219]    [c.521]    [c.363]   
Смотреть главы в:

Проектирование электромагнитных и магнитных механизмов  -> Конструкционные титановые сплавы



ПОИСК



486 титановых

Конструкционные сплавы

Сплавы титановые



© 2025 Mash-xxl.info Реклама на сайте