Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания балок переменного поперечного сечения

Расчетную модель машиностроительной конструкции можно представить совокупностью взаимосвязанных простейших элементов, таких, как масса, жесткость, стержень, пластина или оболочка. Колебания этих элементов описываются достаточно простыми математическими зависимостями. Линейные размеры подсистемы, представляемой простейшим элементом, зависят от расчетной частоты, и с ее увеличением для удовлетворительной точности решения систему приходится разделять на все большее число элементов. Так, например, тонкостенная сварная балка в области низких частот может рассматриваться как сосредоточенная масса, в области средних частот — как стержень, а на высоких частотах — как набор пластин. Частотный диапазон применения стержневой модели значительно расширяется, если учесть сдвиг и инерцию поворота сечений при изгибе и кручении. Эти поправки особенно существенны для балок с малым отношением длины к высоте, набором которых можно представить балку переменного поперечного сечения.  [c.59]


Рассмотрим способ преобразования переменных (замены переменных) на примере моделирования собственных поперечных колебаний балки постоянного поперечного сечения [38].  [c.81]

Расчетную модель опорной конструкции можно представить в виде двух продольных балок или плоских рам переменного поперечного сечения, связанных поперечными связями в виде балок или колец (рис. 1). В частности, такими связями служат корпуса механизмов, установленные на раме. Рама соединяется с фундаментом амортизаторами, каждый из которых в расчете рассматривается как сосредоточенный упруго-вязкий элемент. Балки рамы могут совершать вертикальные и крутильные колебания. Ротор и балки опорной конструкции разбиваются на участки. Расчетная модель участка представляется стержнем постоянного поперечного сечения с распределенными параметрами. К концу стержня присоединяется жестко сосредоточенная масса т -, обладающая моментами инерции к повороту и кручению ll, I]. Масса соединяется упруго с абсолютно жестким фундаментом и сосредоточенной массой т , обладающей моментами инерции /ф, (рис. 2). Упругие связи характеризуются жесткостями Св, Сф, v (/с = 1, 2) в вертикальном, поворотном и крутильном направлениях (на рис. 2 Z = Ь, г з, 7). Демпфирование в системе учитывается комплексными модулями упругости материала стержня и комплексными жесткостями амортизаторов.  [c.6]

Воспользуемся обычным уравнением поперечных колебаний балки переменного сечения и граничными условиями для балки со свободными концами  [c.87]

Низшая частота собственных поперечных колебаний балки переменного сечения, нагруженной сосредоточенными грузами (шпиндели, стойки, колонны, станины)  [c.544]

Из выражения (1.20) видно, что для определения частоты или периода колебаний балки, на которую установлено несколько сосредоточенных грузов, требуется знать только веса W ,. .., Wn и статические прогибы i/i, г/-2,. .., Уп- Величину последних можно легко определить методом теории изгиба балок. В тех случаях, когда балка имеет переменное поперечное сечение или необходимо учесть влияние веса самой балки, необходимо разбить балку по длине на несколько участков и вес каждого участка рассматривать как сосредоточенную нагрузку.  [c.48]

Таким образом, мы сводим задачу о колебаниях двухопорной балки переменного сечения к задаче о колебаниях эквивалентной балки постоянного сечения, имеющей момент инерции площади поперечного сечения и интенсивность собственной массы  [c.341]


Первые исследования вибраций корабля были проведены, вероятно, О. Шликом ), сконструировавшим специальный прибор для их записи ) и определившим экспериментально частоты для различных форм таких вибраций. А. Н. Крылов в своем курсе дает теоретический анализ свободных колебаний корабля. Корабль рассматривается им как балка переменного поперечного сечения он пользуется в расчете приближенным методом Адамса ) для интегрирования обыкновенных дифференциальных уравнений. Около того же времени Крылов заинтересовался колебаниями мостов и опубликовал упомянутую раньше (см. стр. 502) статью о вынужденных колебаниях балок, возбуждаемых подвижными нагрузками. Использованный в этой статье метод был применен впоследствии в анализе продольных колебаний цилиндров и в измерении давления газа в орудиях ).  [c.523]

Колебания судовых корпусов. — В качестве другого п мера приложения теории колебаний стержней переменного сечен рассмотрим задачу о колебаниях судового корпуса ). В дайн случае возмущающая сила обычно возникает от неуравновещеннос двигателя или действия гребного винта ), н если частота воз щаюшей силы совпадает с частотой одной из нормальных фо колебаний корпуса, то могут возникнуть больщие колебания. Ес принять корпус судна за балку переменного поперечного сечения свободными концами и использовать метод Ритца (см. 61), то уравнения (158) всегда можно с достаточной степенью точное определить частоты различных форм колебаний.  [c.380]

Излагается теория малых продольных, крутильных и поперечных колебаний. Выводится дифференциальное уравнение поперечных колебаний с учетом поперечного сдвига и инерции вращения, которое более известно по публикации 1921 года на английском языке. Это уравнение сыграло огромнз роль в теории колебаний упругих систем и известно в литературе как уравнение Тимошенко, а уравнения этого вида для пластин и оболочек как уравнения типа Тимошенко. Приводится решение этого уравнения для случая собственных колебаний. Затем дается изложение результатов автора в области применения тригонометрических рядов и энергетического метода для решения задачи о поперечных вынужденных колебаниях опертого по концам стержня, а также о колебаниях стержня на упругом сплошном основании. Приводится приближенное решение задачи о колебаниях стержней переменного сечения и его сравнение с точным решением. Особенно интересен приведенный здесь результат решенной ранее автором задачи о расчете балки на поперечный удар. При этом в отличие от классической известной схемы учитывались местные деформации балки в зоне удара грузом, в связи с чем появилась возможность определить закон изменения давления в месте удара, а также время соударения.  [c.6]


Смотреть страницы где упоминается термин Колебания балок переменного поперечного сечения : [c.429]   
Смотреть главы в:

Колебания в инженерном деле  -> Колебания балок переменного поперечного сечения



ПОИСК



Балка переменного

Балка переменного поперечного сечени

Балка переменного поперечного сечения

Балка переменного сечения

Балка поперечного сечения

Балка сечения

Балки переменного сеченая

Вал переменного сечения

Колебания балки

Колебания поперечные

Колебания поперечные балки

Поперечное сечение



© 2025 Mash-xxl.info Реклама на сайте