Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Продольно-поперечные пластические волны

ПРОДОЛЬНО-ПОПЕРЕЧНЫЕ ПЛАСТИЧЕСКИЕ ВОЛНЫ  [c.186]

Гл. V. Продольно-поперечные пластические волны  [c.188]

Чтобы сделать книгу доступной широкому кругу читателей, автор вначале излагает основные сведения о динамических свойствах металлов и грунтов, теориях пластичности (включая малоизвестную у нас билинейную теорию) и уравнениях динамики металлов и грунтов. Далее рассматриваются условия непрерывности на фронтах разрывов и анализируются, математические методы, которые затем применяются к задачам о распространении плоских, сферических и цилиндрических пластических волн в металлах и грунтах. Отдельно изучаются продольно-поперечные волны и волны температурных напряжений.  [c.5]


В настоящей главе сначала рассматриваются решения задач о распространении простых волн ). Дается анализ случаев двухпараметрического нагружения границы исследуемой среды. Последовательно рассматриваются тела, свойства которых определяются соответственно уравнениями теории пластического течения, уравнениями динамики грунтов С. С. Григоряна и уравнениями билинейной теории пластичности. Затем излагаются решения задач о распространении продольно-поперечных волн в упруго/вязкопластических однородных средах (плоские и радиальные цилиндрические волны).  [c.186]

В литературе опубликовано уже много решений задач о распространении волн в случае сложного напряженного состояния (для одной пространственной переменной и двухпараметрической нагрузки). Первые работы в этой области ограничивались решением автомодельных задач [4, 12—14, 21, 26, 30, 106, 121 — 123, 215, 216]. В них рассматривался класс краевых условий, для которых напряженное состояние, деформированное состояние и массовые скорости частиц можно представить зависящими только от одной независимой переменной. Это позволило свести систему уравнений с частными производными, описывающих движение среды, к системе обыкновенных уравнений. Ввиду принятого в названных работах характера внешних нагрузок не имели смысла задачи об образовании фронтов пластических волн, которые возникают в результате взаимодействия продольных и поперечных волн. Не ставились также задачи об образовании волны разгрузки. На задачи этих двух типов сделан упор в работах [48—51, 142, 143], в которых рассмотрены более общие задачи о распространении продольно-поперечных волн в упруго/вязкопластической среде для произвольных изменений во времени внешних нагрузок.  [c.186]

До сих пор не существует полного решения задачи о распространении продольно-поперечных волн в среде, описываемой уравнениями динамики грунтов С. С. Григоряна для нагрузок, произвольно изменяющихся во времени. Построение волны пластической нагрузки в случае монотонно возрастающих от нуля нагрузок 011 и 012 на границе полупространства не представляет трудности. Эта волна строится аналогично случаю упруго/вязкопластической среды (см. п. 23), причем для ее определения используется условие (4.7). Локальная скорость распространения пластической волны нагрузки при выборе функции Р р) в виде (4.14) определяется формулой  [c.199]


Таким образом, в координатной плоскости (x,t) волна пластической нагрузки лежит между характеристиками, соответствующими продольным и поперечным упругим волнам или же в пределе совпадает с одной из них. В области пластических деформаций решение можно построить так же, как это сделано в большинстве работ, посвященных задачам о распространении упругопластических волн, вызванных двухпараметрическими нагрузками [74, 133—137].  [c.200]

Форму пластической волны нагрузки следует строить одновременно с решениями в областях III и У, используя на ее фронте условия непрерывности напряжений и скоростей. За волной х = ф( ) располагается область вязкопластических деформаций. Продольные волны сопрягаются с поперечными волнами и взаимодействуют между собой.  [c.205]

В рассматриваемом случае, несмотря на большое сходство волновой картины с таковой для задачи о распространении продольно-поперечных волн сильного разрыва в полупространстве (см. п. 23.2) существует принципиальная разница в построении решения в области пластических деформаций /. Казалось бы, что поскольку поперечная волна, несущая возмущение от поперечной силы, распространяется медленней, чем волна изгиба, то в области / при нулевых начальных условиях поперечная сила и скорость частиц и тождественно равны нулю. Однако в результате сопряжения изгибающих моментов и поперечных сил в уравнениях (25.20) это не так. Наличие в области / изгибающего момента вызывает проявление также поперечной силы. С математической точки зрения предположение N = V = О в области I влечет за собой отбрасывание этих величин в уравнениях (25.7) и (25.17). Последние сводятся к уравнениям параболического типа технической теории балок, в которой всякие возмущения распространяются с бесконечными скоростями.  [c.229]

Пластическое деформирование заготовки осуществляется в результате распространения продольных и поперечных волн, скорости которых определяются соотношениями [2]  [c.38]

В работе [82] подробно исследовано решение в области активного нагружения для полупространства, нагруженного по границе напряжениями p(t) и q t), растущими во времени произвольным образом. Проведен подробный анализ возникновения фронтов волн нагрузки как волн слабого и сильного разрыва (для разных отношений скоростей axpja s, аи, u2s — скорости продольных и поперечных упругих волн, Oip, агр — скорости пластических волн). В [82] показано, что при аг > aip локальная скорость пластической волны нагрузки с ограничена неравенствами  [c.200]


Смотреть страницы где упоминается термин Продольно-поперечные пластические волны : [c.228]    [c.217]    [c.24]   
Смотреть главы в:

Волновые задачи теории пластичности  -> Продольно-поперечные пластические волны



ПОИСК



Волна пластическая

Волна поперечность

Волны пластические поперечные

Волны пластические продольные

Волны поперечные

Волны продольные

Волны продольные и поперечные



© 2025 Mash-xxl.info Реклама на сайте