Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклотронный резонанс в полупроводниках и металлах

Циклотронный резонанс в полупроводниках и металлах. Циклотронная частота электронов, движущихся в кристалле, находящемся в однородном постоянном внешнем магнитном поле, может быть измерена путем исследования поглощения и отражения циркулярно поляризованной электромагнитной волны соответствующей частоты, распространяющейся вдоль магнитного поля. При совпадении частоты волны с циклотронной частотой наступает циклотронный резонанс, проявляющийся в резком усилении поглощения и отражения волны от поверхности кристалла. Этот резонанс был независимо предсказан Дорфманом [61] и Динглом [62].  [c.170]


Измерения циклотронного резонанса в полупроводниках важно для определения частоты и, следовательно, эффективной массы носителей заряда. В металлах наблюдению такого резонанса препятствует ряд трудностей электромагнитные волны частоты  [c.299]

Наиб, важные методы определения Э. м. электронов проводимости и дырок в металлах и полупроводниках— циклотронный резонанс, измерение электронной теплоёмкости и др.  [c.645]

У полупроводников анизотропия зонной структуры означает, что эффективная масса зависит от направления и возможные эквивалентные экстремумы лежат в разных точках зоны Бриллюэна (при всех ife-векторах звезды, ср. с рис. 40). Следствия этой анизотропии подробно рассмотрены в уже цитированной книге [95]. В металлах анизотропия означает отступление формы поверхности Ферми от сферической, как, например, рассмотренная нами на рис. 33. Один из наиболее важных результатов влияния этой анизотропии наблюдается в гальваномагнитных эффектах у металлов при сильных магнитных полях. Очевидно, что при слабых магнитных полях электрон между двумя столкновениями пробегает только небольшие участки поверхности Ферми, тогда как при сильных магнитных полях описывает замкнутые траектории на поверхности Ферми. Время пробега по порядку величины равно обратной частоте циклотронного резонанса. Граница между сильными и слабыми магнитными полями лежит, следовательно, при о) т=1 или, так как (о = еВ/ст и [х ет/т, при (1/с) fiS=l.  [c.244]

Следует подчеркнуть, что полностью микроскопический подход к исследованию энергетического спектра электронов в твердом теле связан с чрезвычайными математическими трудностями обш,его характера, не специфичными именно для многоэлектронной задачи. Эти трудности возникают и в обычной одноэлектронной теории и связаны с необходимостью решения задачи о движении одного электрона в периодическом поле идеальной решетки. Дело в том, что обычно в коллектив электронов, определяющих электрические, магнитные и др. свойства твердого тела, естественно включать электроны не всех вообще, а лишь одной-двух внешних атомных оболочек. Конкретное разделение на коллектив электронов и атомные остовы зависит, естественно, от природы вещества и характера задачи (см. ниже). Однако вид электронной плотности даже в изолированном атоме обычно не удается представить в простой аналитической форме. В результате приходится либо апеллировать к более или менее грубым приближенным методам, либо иметь дело с уравнением неизвестного вида. По этой причине представляется целесообразным вообще отказаться от полного вычисления энергетического спектра электронов в идеальной решетке, определяя его параметры из опыта. В полупроводниках для этой цели удобно использовать, например, явление циклотронного (диамагнитного) резонанса [2], [3] в металлах успех сулит использование гальваномагнитных данных [1] и исследование поглощения ультразвука в магнитном поле [4]. Динамическая теория при этом должна давать ответ на следующие вопросы  [c.158]


В 1956 г. харьковскими физиками [63] был предложен новый метод наблюдения циклотронного резонанса в металлах. При исследовании циклотронного резонанса в полупроводниках кристаллическую пластинку помещают перпендикулярно магнитному полю и электромагнитная волна падает вдоль поля. Было предложено при исследовании циклотронного резонанса в металлах направлять магнитное поле вдоль металлической пластинки (рис. 34). В этом случае оси спиральных траекторий электронов находятся в плоскости пластинки. При поле 10 —10 э радиус орбиты электрона 10 .см и циклотронная частота лежит в области сантиметрового диапазона радиоволн. Если скин-слой имеет толщину порядка 10 см, то большую часть своего пути электрон будет находиться вне воздействия электромагнитного поля волны. Однако если период радиоволны окажется равным или кратным периоду обращения электрона, то электрон, влетая в скин-слой, будет ускоряться (или замедляться). Это ускорение аналогично ускорению заряженной частицы в дуантах циклотрона, поэтому явление резонансного взаимодействия электронов, движущихся  [c.171]

ДиаиагнетшЕИ. Для них Р. м. обычно не выделяется в самостоят. объект исследования, поскольку подчиняется обычным законам взаимодействия электронов (связанных или свободных) с магн, полем. Ширина линии циклотронного резонанса в металлах и полупроводниках определяется длиной свободного пробега носителей заряда. Исключение составляют аномально сильные диамагнетики — сверхпроводники, где процессы Р. м. наиб, существенны в смешанном состоянии сверхпроводников второго рода.  [c.322]

О диамагнитной релаксации не приходится говорить, как об особом релаксационном процессе. Диамагнитные свойства обусловлены орбитальным движением заряженных частиц (в твердых телах — электронов), и потому диамагнитная релаксация — следствие обычных электронных взаимодействий в твердых телах. Так, например, гаирина циклотронного резонанса в металлах и полупроводниках определяется длиной свободного пробега электронов проводимости.  [c.414]

В сильных магн. полях при низких темп-рах в вырожденных полупроводниках и полуметаллах наблюдаются те же резонансные осцилляц, зависимости, что и в металлах. В невырожденных полупроводниках возможно наблюдение только акустич. циклотронного резонанса.  [c.57]

Наряду с К, о, в магн. поле в металлах и полупроводниках могут наблюдаться также квантовые эффекты др. природы размерное квантование в плоских плёнках, проволоках и цилиндрах, связанное с ограничением области движения (см. Квантовые размерные эффекты) или с интерференцией электронов (А ароно-ва Бома эффект), и розонапсные явления — циклотронный резонанс, резонанс на магнитных поверхностных уровнях, магнитофононный резонанс.  [c.324]

При таких условиях электропроводность полупроводника столь мала (в отличие от ситуации в металлах, см. т. 1, стр. 278), что возбуждающее электромагнитное поле может проникнуть в глубь образца достаточно далеко и вызвать резонанс при этом не возникает никаких трудностей, связанных с глубиной скин-слоя. С другой стороны, при таких условиях (низкие температуры, чистые образцы) число носителей, которые при тепловом равновесии способны участвовать в резонансе, может оказаться столь малым, что носители должны создаваться другим путем, например с помощью фотовозбуждения. Некоторые типичные данные, получающиеся при изучении циклотронного резонанса, представлены на фиг. 28.9.  [c.194]


Смотреть страницы где упоминается термин Циклотронный резонанс в полупроводниках и металлах : [c.433]    [c.397]    [c.35]    [c.430]   
Смотреть главы в:

Теория твёрдого тела  -> Циклотронный резонанс в полупроводниках и металлах



ПОИСК



Полупроводники

Полупроводники циклотронный резонанс

Резонанс

Циклотрон

Циклотронный резонанс

Циклотронный резонанс в металлах



© 2025 Mash-xxl.info Реклама на сайте