Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граната

Развитие лазерной сварки прошло через два этапа. Вначале развивалась точечная сварка — на основе импульсных твердотельных лазеров на рубине и на стекле с неодимом. С появлением мощных лазеров на Oj и лазеров на гранате с неодимом, дающих непрерывное излучение или последовательность часто повторяющихся импульсов, стала развиваться шовная сварка с глубиной проплавления до нескольких миллиметров (и даже сантиметров).  [c.297]


Лазерную резку материалов осуществляют как в импульсном, так и в непрерывном режиме. При резке в импульсном режиме непрерывный рез получается в результате наложения следующих друг за другом отверстий. Наиболее широкое применение получила резка тонкопленочных пассивных элементов интегральных схем, например, с целью точной подгонки значений их сопротивления или емкости. Для этого применяют импульсные лазеры на алюмо-иттриевом гранате с модуляцией дробности, лазеры на углекислом газе. Импульсный характер обработки обеспечивает минимальную глубину прогрева материала и исключает повреждение подложки, на которую нанесена пленка. Лазерные установки различных типов позволяют вести обработку при следующих режимах энергия излучения 0,1. .. 1 МДж, длительность импульса 0,01. .. 100 мкс, плотность потока излучения до 100 мВт/см, частота повторения импульсов 100. .. 5000 импульсов в 1 G. В сочетании с автоматическими управляющими системами лазерные установки для подгонки резисторов обеспечивают производительность более 5 тысяч операций за 1 ч. Импульсные лазеры на алюмо-иттриевом гранате применяют также  [c.299]

Граната массы 12 кг, летевшая со скоростью 15 м/с, разорвалась в воздухе на две части. Скорость осколка массы 8 кг возросла в направлении движения до 25 м/с. Определить скорость второго осколка.  [c.276]

В твердотельных лазерах в качестве рабочего вещества используют твердые тела (синтетический рубин, иттриево-алюми-ниевый гранат, неодимовое стекло).  [c.121]

Граната была брошена под углом к горизонту с некоторой начальной скоростью. Во время полета она взорвалась. Как будет двигаться после этого центр масс образовавшейся системы материальных точек  [c.439]

Гранат, активированный неодимом, широко применяется в качестве активной среды в твердотельных лазерах. Схема энергетических состояний иона неодима в гранате дана на рис.  [c.191]

Граната, летящая в горизонтальном направлении со скоростью V, разорвалась на два осколка. Больший осколок массы Ш] продолжает двигаться в прежнем направлении, но его скорость возросла до Vi. Определить скорость меньшего осколка, масса которого ni2.  [c.43]

Первое условие выполняется, например, в иттриевом феррите-гранате с погрешностью до 5%. Значения коэффициентов, определяющих упругие и магнитоупругие свойства, см. в табл. 29.18, 29.21, 29.22.  [c.708]

ФЕРРИТЫ СО СТРУКТУРОЙ ГРАНАТА  [c.716]

Для теоретической интерпретации результатов по ферромагнитному резонансу и анизотропии редкоземельных ферритов-гранатов необходим одновременный учет расщепления уровней ионов под действием кристаллического поля, спин-орбитального и обменного взаимодействий, которые подчас являются величинами одного порядка. В настоящее время информация об электронных уровнях ионов редкоземельных элементов еще недостаточна для надежной теоретической интерпретации результатов.  [c.716]


Свойства ферритов со структурой граната приведены в табл, 29.10—21.31 и на рис. 29.20—29.30.  [c.716]

Из многих существующих типов лазеров для сварки используют только те, что приведены в табл. 36. Из них в режиме непрерывной генерации могут работать лишь два — твердотельный на алюмоиттриевом гранате, активированном атомами неодима (/ 1%), и газовый, содержащий Og—Nj—Ые-плаз.му ( 6% СО , 18% и 76% Не).  [c.167]

Важным также является вопрос о форме записи исходного дифференциального уравнения — через абсолютные. или пульсационные скорости. Обычно. записывается и рещается уравнение движения в абсолютных скоростях (Гранат, Хаскинд и др.). Сопоставление предложенных решений показало, что они значительно более сложны, чем те, которые можно получить для пульса-ционного движения частицы. Кроме того, такой подход затрудняет строгое решение при учете Fo6 для всех режимов обтекания. Поэтому кажется предпочтительнее запись исходного уравнения через пульсационные составляющие скорости.  [c.103]

Поверхностная закалка при нагреве лазером. Лазеры — это генераторы света (квантовые генераторы оптического диапазона). В основу их работы положено усиление электромагнитных колебаний при помощи индукцированного излучения атомов (молекул). Лазерное излучение монохроматично, распространяется очень узким пучком и характеризуется чрезвычайно высокой концентрацией энергии. Для промышленных целей применяют лазеры, у которых в качестве активных тел, т. е. источников генерируемого излучения, служат 1) твердые тела (твердотельные лазеры) рубины, иттрий-алюминиевые гранаты (ИАГ) и стекла, активированные неодимом  [c.225]

На макромасыггабе образование спиральных структур в металлических материалах было обнаружено в тонких магнитных пленках феррит-гранатов с направлением легкой оси намагничивания перпендикулярно пленке в случае приложенного внешнего магнитного поля [99, 100, 101]. Образование магнитных доменов в феррит-гранатах происходит, когда на пленку, предварительно намагниченную до насыщения магнитным полем Н, приложенным вдоль легкой оси, подается импульс магнитного поля, обратного по направлению. В результате этого вблизи дефектов образуются стабильные локаль-  [c.202]

Рис. 4,5. Спиральные домены в тонких пленках феррит-гранатов в пере.меином мапгатном поле [102] Рис. 4,5. Спиральные домены в <a href="/info/18384">тонких пленках</a> <a href="/info/63152">феррит-гранатов</a> в пере.меином мапгатном поле [102]
Если элементарные ячейки подобны по форме, но имеют разные размеры, то геометрическое расположение на соответствующих рентгенограммах отличается лишь масштабом примером могут служить ячейки в структурах а-железа и граната Mg3Al2[Si04]3, которые подобны по форме, но имеют разные параметры (параметр ячейки а-железа равен 0,286 пм, а параметр ячейки граната — 1,144 нм). В ячейке а-железа всего два одинаковых атома, в ячейке же граната 160 атомов разных сортов.  [c.44]

Неодимовые лазеры — это лазеры, в которых активным элементом является либо кристалл Y3AI5O12 (обычно называемый YAG), где часть ионов иттрия Y + замещена ионами неодима Nd +, либо оптическое стекло, активированное ионами неодима. Упрощенная схема энергетических уровней неодима в кристаллах иттрий-алюми-ниевого граната приведена на рис. 35.14. В отличие от рубинового лазера, работающего по трехуровневой схеме, неодимовый лазер работает по четырехуровневой схеме. До возбуждения подавляющее число частиц находится на исходном уровне Накачка осуществляет-  [c.287]

В качестве примера рассмотрим спектры поглощения и люминесценции иона неодима (Nd ), введенного как примесь в кристалл иттриево-а.аюмн-ниевого граната (YgAI Oij).  [c.191]

Решение. В условиях задачи предполагается, что движение гранаты происходит относительно системы отсчета, связанной с Землей. Силы, возникающие при взрыве гранаты, во много раз больше внешних сил, а время взаимодействия (время, за которое происходит взрыв гранаты) весьма мало. Поэтому импульсом внешних сил в течение малого промежутка времени можно пренебречь и систему, состоящую из двух осколков, считать замкнутой. Тогда, по закону сохранения импульса, (т + т2)у = т-у + гп2У2. Чтобы импульс системы не изменялся, меньший осколок должен двигаться также в горизонтальном направлении, но в противоположную сторону. Переходя от векторного равенства к скалярному, имеем + т2)и = п11и2 + гп2 2. Отсюда получим  [c.43]


Поведение величины Ms в зависимости от температуры и поля может носить более сложный характер, чем в ферромагнетиках, так как характер изменения Мл и. Иа с температурой и с полем может быть различным. Так, при повышении температуры может быть монотонное уменьшение Ms и обращение A Is в нуль в точке Кюри Тс, выше которой вещество парамагнитно, хотя па-рамашитная восприимчивость изменяется с температурой по закону, отличающемуся от закона Кюри для простых парамагнетиков. При повышении температуры в области ниже Тс возможно также увеличение спонтанной намагниченности в определенном температурном интервале, Для некоторых ферритов, в частности для многих редкоземельных ферритов — гранатов (см. табл. 29.15 и рис, 29.22), существует температура компенсации Гкомп. при которой намагниченности подрешеток становятся одинаковыми и результирующая намагниченность обращается в нуль. Появление точки компенсации возможно также при изменении состава ферримагнетика. например в иттрий-железо-галлиевых гранатах.  [c.707]

Оптические и магнитооптические свойства. Ферриты обладают сравнительно высокой прозрачностью в ряде участков ближнего и далекого инфракрасного спектров. Ферриты-гранаты характеризуются лучшей прозрачностью, чем ферриты-шпинели. Так, в иттриевом феррите-гранате имеются окна прозрачности при длинах волн K>L<0,1 мм и 1<л<10 мкм между двумя этими областями наблюдается сильное решеточное поглощение. В редкоземельных ферритах-гранатах в первой области прозрачности могут наблюдаться поглощение при ферромагнитном резонансе (если поле анизотропии велико) в случае обменного резонанса редкоземельной подрешетки в поле железных подрешеток, а также электронные переходы между уровнями основного мультиплета редкоземельных ионов. Во второй области наблюдаются электронные переходы в редкоземельных ионах и (при более коротких длинах волн) электронные переходы в ионах яселеза в октаэдрических и тетраэдрических позициях. Ферриты-гранаты в видимой и ближней инфракрасных областях спектра обнаруживают значительный эффект Фарадея при распространении света вдоль вектора намагниченности и примерно такой же по модулю эффект Коттона — Мутона (магнитное линейное двупреломле-ние) при распространении света перпендикулярно вектору намагниченности fl09—110].  [c.708]

Ниже рассмотрены характерные особенности структуры и магнитных свойств различных групп ферритов, наиболее интересных в научном и техническом аспектах, а именно ферритов со структурой шпинели, граната, гек-сгферритов. Кроме того, приведены некоторые сведения о свойствах халькогенидных шпинелей, обладающих ферромагнитными и антиферромагнитными свойствами, а также сведения о ферромагнитных и антиферромагнит-ных халькогенидах европия и других ферромагнетиков с различной структурой. Свойства большого и важного класса ортоферритов рассмотрены в главе об антиферромагнетиках.  [c.709]

Кристаллографическая структура. Ферримагнитные оксиды типа граната кристаллизуются в структуре, изоморфной классическому минералу гранату Саз [А12](31з)0 2, Структура граната описывается кубической пространственной группой 1аЫ—ОЭлемент структуры показан на рис. 29.20. Кубическая элементарная ячейка граната содержит восемь формульных единиц. Шестнадцать ионов АР+ занимают октаэдрические позиции, обозначаемые 16а, двадцать четыре иона Si + г анимают позиции в центрах тетраэдров, обозначаемые 24d, и двадцать четыре иона a + находятся в окружении из восьми ионов кислорода, и их позиции обозначаются 24с.  [c.716]

Интерес к структуре граната значительно возрос после синтеза ферримагнитных гранатов типа MsFesOis, где — ион редкоземельного металла или иттрия.  [c.716]

Магнитные свойства и намагниченность насыщения. В гранатах в отличие от ферритов со структурой шпине-ля были введены в рассмотрение три магнитные подре-шетки. Наиболее сильное антиферромагнитное взаимодействие, определяющее температуру Кюри Тс, осуществляется между ионами трехвалентного железа в октаэдрической 16а- и тетраэдрической 24 -подрешетках. Подрешетка редкоземельных ионов 24с наиболее сильно связана отрицательным обменным взаимодействием с тетраэдрической подрешеткоД (в гранатах с легкими редкоземельными ионами от Рг до Sm — октаэдрической подрещеткой), причем эта связь примерно в 10 раз слабее, чем (а — d)- взаимодействие. Намагниченность насыщения Ms в случае тяжелых редкоземельных гра-  [c.716]

Ферромагнитный резонанс и анизотропия. Ферриты-гранаты имеют меньшую удельную намагниченность, чем ферриты-шпинели, и большой интерес к ним был вызван в основном их уникальными свойствами в СВЧ-диапазо-пе. Минимальные значения ширины линии ферромагнитного резонанса АН 16 А/м (0,2 Э) были получены в ттриевом феррите-гранате, свободном от примесей редкоземельных ионов.  [c.716]

Магнитострикцня. Магнитострикция редкоземельных ферритов-гранатов линейно связана с концентрацией редкоземельных ионов и сильно возрастает при понижении температуры. Рекордные значения Ящ = 2420 lQ-< и Л оо= 1200-10 в поле напряженностью Н= 2000 кА/м при температуре 4,2 К были получены в тербиевом феррите-гранате, что сравнимо по порядку с магнитострик-цией редкоземельных металлов.  [c.716]


Смотреть страницы где упоминается термин Граната : [c.169]    [c.103]    [c.191]    [c.192]    [c.192]    [c.235]    [c.64]    [c.64]    [c.64]    [c.64]    [c.64]    [c.64]    [c.64]    [c.121]    [c.129]    [c.149]    [c.157]    [c.315]    [c.653]    [c.716]    [c.384]    [c.170]   
Техника в ее историческом развитии (1982) -- [ c.0 ]

Техническая энциклопедия том 21 (1933) -- [ c.338 , c.342 ]



ПОИСК



Гранато



© 2025 Mash-xxl.info Реклама на сайте