Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики, определяемые при испытании на выносливость

ХАРАКТЕРИСТИКИ, ОПРЕДЕЛЯЕМЫЕ ПРИ ИСПЫТАНИИ НА ВЫНОСЛИВОСТЬ  [c.60]

ПРЕДЕЛ ВЫНОСЛИВОСТИ - характеристика материала или конструкции, устанавливаемая при испытании на усталость и определяемая как наибольшее напряжение, которое может выдержать испытываемый образец без разрушения при заданном высоком числе циклов (10 108 и т. д.), называемом базой испытания, при данном коэффициенте асимметрии цикла.  [c.115]


Характерной особенностью испытания деталей на выносливость является значительное рассеяние точек, определяемое главным образом нестабильностью механических характеристик материала. При построении кривых выносливости по результатам испытаний до сих пор ориентировались на средние экспериментальные данные и лишь сравнительно недавно перешли к построению кривых выносливости с различной вероятностью неразрушения.  [c.324]

Зависимость q от 1/г приведена на рис. 72. В данном случае как К так и q являются ие только характеристиками материала, но зависят также от конструктивных особенностей исследуемых объектов. При испытании образцов с надрезом изменялся не только уровень максимальных напряжений, определяемый а ,, но и площадь зоны, занятая повышенными напряжениями и характеризуемая величиной Lo6 Go6 (см. рис. 72). Таким образом, при уменьшении радиуса надреза изменение предела выносливости определяется противоположным влиянием двух факторов 1) ростом максимальных напряжений и 2) масштабным фактором, который влияет в сторону увеличения усталостной прочности из-за уменьшения размеров зоны, с повышенными напряжениями.  [c.142]

Сопоставление сопротивления усталости стыковых соединений, нахлесточных соединений с прикреплением патрубков и многослойного металла с перфорационными отверстиями. Основным видом несущего соединения многослойных конструкций является стыковой монолитный шов, выполненный автоматической или ручной сваркой. Исходя из этого, при расчетной проверке многослойных конструкций на выносливость в качестве основного расчетного сопротивления принимаются характеристики сопротивления усталости стыкового соединения, устанавливаемые нормами расчета на прочность на основании результатов соответствующих экспериментов. Таким соединениям, как вварка различного рода патрубков и устройство отводов в многослойной стенке, а также другим конструктивным особенностям (устройство перфорационных отверстий) отводится второстепенная роль. Однако эти элементы в конструкциях из монолитного металла создают повышенную в сравнении со стыковыми соединениями концентрацию напряжений, которая, в большинстве случаев, является определяющим фактором, обусловливающим инициирование и развитие усталостных разрушений. Эти виды соединений могут определять также несущую способность многослойных сварных конструкций, подвергающихся в эксплуатационных условиях воздействию циклических нагрузок. Все это потребовало выполнения специальных исследований, связанных с сопоставлением сопротивления усталости рассмотренных видов соединений. Испытаниям подвергались три серии образцов первая — эталонный многослойный образец со стыковым соединением вторая — образец, воспроизводящий устройство перфорационных отверстий в многослойной стенке третья — образец, воспроизводящий вварку угловыми швами мо-  [c.260]


Наиболее распространены макро- и микроструктурный анализы и исследования механических свойств. Последние определяют как при комнатной температуре, так и применительно к условиям работы изготовляемых изделий при повышенных или пониженных температурах. Определяемые при этих испытаниях предел прочности на растяжение а ,, предел текучести а , относительное удлинение 8, относительное сужение площади поперечного сечения ф, твердость, предел выносливости ах, ударная вязкость и др. являются основными характеристиками, приводящимися в государственных стандартах (ГОСТ) и технических условиях (ТУ) на металлы и сплавы.  [c.92]

Механические свойства сталей, чугунов, цветных металлов и сплавов определяют экспериментально на образцах при различных видах их нагружения. Наибольшее применение имеют механические характеристики (табл, 5), определяемые на основании испытаний образцов на растяжение, ударную вязкость и усталостную выносливость.  [c.10]

Функции распределения долговечности при действии переменных нагрузок. Исследования закономерностей рассеяния характеристик сопротивления усталостному разрушению легких сплавов показали, что долговечность при постоянном уровне максимального напря кения цикла и предел ограниченной выносливости на заданной базе испытания имеют как нижнюю, так и верхнюю границы [28]. Верхняя граница долговечности легких сплавов, определяемая как параметр распределения, на несколько порядков превышает наблюдаемое при испытании число циклов до разрушения. Нюкняя граница долговечности существенно отличается от нуля. Поэтому мо кно считать, что долговечность при испытаниях на усталость легких сплавов имеет  [c.137]

Поскольку испытания на выносливость требуют много времени и сопряжены с большими материальными издержками, Вёлер, естественно, попытался найти какие-либо зависимости между усталостной прочностью и другими механическими характеристиками материала, определяемыми при статических испытаниях. Насколько можно судить, особенно он интересовался пределом упругости тех материалов, с которыми он производил усталостные испытания. Установление предела упругости по испытаниям на растяжение требует точного измерения весьма малых удлинений, пригодных же для этой цели инструментов в то время еще не существовало. Поэтому Вёлер решил определить предел упругости по испытаниям на изгиб, хотя он и отдавал себе ясный отчет в том, что этот метод не обеспечивает надлежащей точности, поскольку предельное напряжение достигается сначала самыми крайними волокнами, а начало текучести становится заметным лишь после того, как в значительной части материала напряжения уже превзойдут предел упругости. Чтобы сделать такие измерения, насколько это возможно, точными, Вёлер применил специальную  [c.207]

Первое свойство — это способность выдерживать не разрушаясь переменные нагрузки при высоких температурах характеристикой его является условный предел выносливости, определяемый при заданной температуре и символически обозначаемый так сГшбоо- Индекс W указывает на то, что данное напряжение является условным пределом выносливости, второй числовой индекс указывает продолжительность испытания в часах. Можно поставить цель — исключить возможность разрушения от усталости. Тогда достаточно добиться того, чтобы условные пределы выносливости (с шюо. продолжительности испытания пределы длительной прочности (сгщо, Osoo. )  [c.310]

Во многих случаях напряжения в конструкции при периодических нагрузках превышают предел усталости. Это относится, например, к деталям авиационных двигателей, лопастям несухцих винтов вертолетов, к ряду объектов военной техники, срок эксплуатации которых очень ограничен различными причинами. В этих случаях важно знать характеристики ограниченной выносливости, которые определяют ресурс детали или конструкции, обеспечивают сопротивление усталостным разрушениям в течение определенного срока, т. е. некоторого числа циклов. Поэтому,, если при расчетах на усталость из всей кривой Велера важно знать фактически лишь одну точку — предел усталости, то при расчете на ограниченную выносливость суш.ественное значение приобретает верхняя часть кривой Велера. Однако характеристики работы детали и ее ресурс, поскольку он задан, исходя из других соображений, фактически определяют уменьшенную базу испытаний на усталость. Тем самым главным становится по возможности наиболее точное воспроизведение в испытаниях истинных условий работы детали и установление статистических характеристик, определяющих вероятность разрушения детали при напряжениях, отличающихся от выявленного таким образом условного предела усталости (предела ограниченной выносливости), и при числах циклов, отличающихся от базы испытаний. Последнее особенно важно в связи с тем, что при напряжениях, заметно превышающих истинный предел усталости и близких к пределу статической прочности, разброс данных усталостных испытаний бывает очень большим. В последние годы статистическим методам обработки данных усталостных испытаний уделяется большое внимание.  [c.306]


Отсутствие объективного анализа перечисленных методов испытания на усталость затрудняло их-правильный выбор. Применение для вероятностного моделирования ЭВМ позволило сопоставить различные методы испытаний, оценить их эффективность — точность и трудоемкость, а также выбрать оптимальные схемы испытаний на усталость в зависимости от определяемых характеристик сопротивления усталости и назначенных для них уровней значимости q й доверительной вероятности Рд. При вероятностном моделировании на ЭВМ различных методов испытаний на усталость исходными данными являются характеристики распределения долговечности гипотетической генеральной кривой усталости параметры а-1/Vp, iVp, т —показатель- степени уравнения a iV= onst средней (с вероятностью Р = 0,5) кривой усталости, дисперсия логарифмов долговечностей 5 ig7Vp> которая может быть принята постоянной (подтверждается экспериментально в пределах каждого-линейного участка кривой — см. разд. 3.3), а также математический алгоритм вычислений оценок пределов выносливости, соответствующий моделируемому методу испытаний на усталость.  [c.101]

Значение предела выносливости (для основного металла) или 0 (для сварного соединения) определяются экспериментально испытанием серии одинаковых образцов и построением линии выносливости для некоторого заданного значения характеристики цикла. Далее, используя установленное опытным путем положение о том, что обобш,енная диаграмма выносливости может быть с достаточной степенью точности представлена прямолинейными зависимостями, строят эту диаграмму по двум точкам. В качестве таких точек используются либо два значения предела выносливости, полученные экспериментальным путем для двух различных значений характеристики цикла [71, либо только одно значение предела выносливости, а в качестве второго значения — предел прочности, который условно принимается в качестве предела выносливости при характеристике цикла г = 1 [8]. Последний способ построения применяется чаще потому, что он является более легким. Однако необходимо заметить, что верхняя точка диаграммы, определяемая значением 0 = 0 , действительного физического смысла не имеет. Она может быть использована только потому, что, упрощая само построение на участке действительной части диаграммы (отмеченной сплошными линиями), дает достаточно близкое совпадение с истинными значениями пределов выносливости.  [c.34]

Однако в распоряжении конструктора во ногих случаях не бывает диаграммы пределов выносливости материала вследствие большой длительности и дороговизны испытаний для ее получения. Поэтому в расчетной практике используются приближенные диаграммы предельных напряжений при асимметричных циклах, которые строятся на ограниченном числе экспериментально определяемых характеристик прочности материала. Такие схематизированные диаграммы предельных напряжений, получившие распространение в расчетной практике, были предложены акад. АН УССР С. В. Серенсеном и проф. Р. С. Кинасо-швили. Прежде чем приступить к их рассмотрению, докажем, что точки, лежашие на любом луче, проведенном из начала координат диаграммы, показанной на рис. 16.6, отвечают подобным циклам, и рассмотрим действительную диаграмму предельных напряжений.  [c.498]


Смотреть страницы где упоминается термин Характеристики, определяемые при испытании на выносливость : [c.303]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Характеристики, определяемые при испытании на выносливость



ПОИСК



1.125, 126 — Определяемые

Выносливость

Испытания на выносливость

Определяемые характеристики



© 2025 Mash-xxl.info Реклама на сайте