Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обратный и полуобратный методы

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений при заданных граничных условиях, не всегда возможен. Обратный метод, примененный в гл. 7 для плоских задач, часто не соответствует практической постановке задачи. Сен-Венаном был предложен так называемый полуобратный метод решения задач теории упругости, который заключается в том, что часть перемещений и напряжений задается, а остальные неизвестные определяются из уравнений теории упругости при заданных граничных условиях. Полуобратный метод не является общим. Однако он оказался одним из самых эффективных методов решения задач теории упругости.  [c.172]


В решениях обратных задач задаются либо перемещения, либо компоненты тензора деформаций в рассматриваемом теле и определяются все остальные величины, в том числе и внешние силы. Решения обратных задач особых трудностей не представляют, однако не всегда возможно прийти к решениям, представляющим какой-либо практический интерес. Исходя из этого Сен-Венаном предложен полуобратный метод, состоящий в частичном задании одновременно перемещений и напряжений, затем в определении при помощи уравнений теории упругости уравнений, которым должны удовлетворять оставшиеся перемещения и напряжения. Полученные уравнения сравнительно легко интегрируются. Таким образом, этим методом можно получить полное и точное решение для большого числа частных задач, наиболее часто встречающихся в практике. Сен-Венан применил свой метод к задачам нестесненного кручения и изгиба призматических тел.  [c.89]

Как уже известно, при решении конкретной задачи полуобратным методом Сен-Венана задаются, например, некоторыми компонентами at) тензора напряжений из каких-либо интуитивных соображений, а затем из основных уравнений определя<от остальные компоненты at . При этом может возникать естественный вопрос об однозначности полученного решения. Этот вопрос, возникающий также при решении обратной задачи, снимается теоремой Кирхгофа  [c.91]

Обратный И полуобратный методы  [c.118]

Как видно из предыдущей главы, упруго-пластическая задача для сложного сдвига исследуется достаточно полно аналитическими средствами. В более сложной задаче кручения, когда пластическая зона становится сравнимой с размером поперечного сечения стержня, результатов значительно меньше. Здесь следует прежде всего упомянуть точное решение В. В. Соколовского для стержня овальной формы, близкой к эллипсу [24]. Это решение получено полу-обратным методом в 1942 г. Другим полуобратным методом Л. А. Галин [13] решил несколько упруго-пластических задач для стержней с сечением, близким к полигональному (в частности, близким к прямоугольному сечению). Л. А. Галин также привел задачу кручения стержня полигонального сечения к решению дифференциального уравнения класса Фукса [12], что позволило ему найти эффективное решение некоторых задач (например, для квадратного сечения).  [c.62]

Простейшие задачи теории упругости решаются нлн полуобратным методом Сеи-Венана, нли как обратные задачи в тех случаях, когда решение фактически сводится к проверке решений задач, известных из сопротивления материалов.  [c.82]


Точно так же возможно применение методов теории упругости к решению задачи теории пластичности, а именно прямого, обратного и полуобратного. Очень эффективным является приближенный метод, предложенный А. А. Ильюшиным — метод упругих решений.  [c.271]

При решении всех предыдущих задач мы шли обратным методом, задаваясь напряжениями и выясняя, при каких силах, действующих на поверхности, получается выбранная система напряжений при этом каждый раз может возникнуть вопрос, нельзя ли при какой-либо другой системе напряжений получить такие же силы на поверхности. Если это окажется возможным, то решение уравнений теории упругости окажется многозначным заданным силам на поверхности будут соответствовать несколько систем напряжений, и необходимо выяснить, какие из этих систем имеют место в действительности. В этом случае при обратном или полуобратном способе решения мы не будем уверены, что выбрали именно ту систему напряжений, которая соответствует действительности. Благодаря этому вопрос об однозначности решения уравнений теории упругости приобретает большое вначение.  [c.125]

При решении задач второго класса также возможно применение полу-обратного метода. Так Ф. Б. Нельсон-Скорняков (1937) использовал для построения напорного откоса плотины в задаче пятого типа задание соответствующего участка контура области годографа скорости в виде подходящей дуги окружности, проходящей через начало координат. Б. Б. Девисон (1938) указал, что наложение условия г ) — Кх = onst на напорный откос эквивалентно заданию его на области годографа скорости дугой окружности, являющейся продолжением дуги свободной поверхности, т. е. эквивалентно применению полуобратного метода в задачах шестого типа. Другой пример приложения полуобратного метода к задаче, шестого типа можно найти у В. С. Козлова (1940).  [c.607]

Существенное внимание уделяется общим методам решения проблем теории упругости. При рассмотрении дифференциальных уравнений Навье в перемещениях вводятся векторный и скалярный потенциалы, потенциал Ламе, вектор Буссинеска, вектор Папковича. Анализируя дифференциальные уравнения в напряжениях Бельтрами — Мичелла, автор вводит функции напряжений Максвелла и Мореры. Подробно показано применение обратного и полуобратного методов Сен-Венана.  [c.6]


Смотреть страницы где упоминается термин Обратный и полуобратный методы : [c.101]    [c.5]   
Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Обратный и полуобратный методы



ПОИСК



Метод полуобратный

Обратные методы

Прямые и обратные решения задач теории упругости. Полуобратный метод Сен-Венана



© 2025 Mash-xxl.info Реклама на сайте