Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние протона на дейтроне

Модификация этих формул в случае кулоновского взаимодействия будет рассмотрена в следующем пункте применительно к описанию рассеяния протона на дейтроне.  [c.307]

Рассеяние протона на дейтроне. Изложенный выше подход можно проиллюстрировать на примере рассеяния протона на легком ядре описание этого процесса предполагает, что соответствующие характеристики рассеяния нейтрона на ядре нам известны. Условие (29) ограничивает применимость нашего подхода легкими ядрами Z 10. Ниже будет рассмотрена простейшая задача такого рода — рассеяние протона на дейтроне при нулевой энергии.  [c.307]


Упругое и квазиупругое (с расщеплением дейтрона) рассеяние электронов на дейтроне позволяет найти распределение плотности электрич. заряда и магн. момента Н. формфактор Н.). Согласно эксперименту, распределение плотности магн. момента Н. с точностью порядка веек, процентов совпадает с распределением плотности электрич. заряда протона и имеет среднеквадратичный радиус см (0,8 Ф). Магн. форм-  [c.268]

Сильное взаимодействие. Изотопич, инвариантность сильного вз-ствия приводит к определ. связи между хар-ками разл. процессов с участием Н. и протона, напр. эфф. сечения рассеяния я+-мезона на протоне и л "-мезона на Н. равны, т. к. системы я+р и л п имеют одинаковый изотопич. спин /= /з и отличаются лишь проекциями изотопич. спина (/з=- -% в первом и /з=—во втором случае), одинаковы сечения рассеяния К +-мезона на протоне и К -мезона на Н. и т. п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов, (Данные о вз-ствии разл, нестабильных ч-ц с Н. получают гл. обр. из экспериментов по рассеянию Н. на дейтроне.) Однако при низких энергиях вз-ствия пирс заряж. ч-цами и ат. ядрами сильно различаются из-за наличия у протона электрич. заряда, обусловливающего существование дальнодействующих кулоновских сил между ним и др. заряж. ч-цами на таких расстояниях, на к-рых короткодействующие яд. силы практически отсутствуют. Отсутствие у Н. электрич. заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к ядрам. Именно этим объясняется уникальная способность Н. сравнительно малых энергий вызывать разл. яд. реакции, в т. ч. деление тяжёлых ядер (см. Деление атомного ядра).  [c.452]

В настоящей статье обращается внимание на простую возможность радикально упростить решение многих задач обсуждаемого типа путем сведения их к аналогичным задачам без КВ. Сюда относится описание рассеяния и связанных состояний двух заряженных комплексов, каждый из которых связан короткодействующими силами. Простейший пример такого рода — рассеяние протона р) на дейтроне d) — и будет служить иллюстрацией излагаемого ниже подхода, который восходит к известной теории рр-рассеяния Ландау и Смородинского [2.  [c.298]

Упругое рассеяние электронов на нейтронах измерялось по разности распределений, полученных с дейтериевой и водородной мишенями. Однако эта процедура требует учета поправок, связанных с ядерной структурой дейтрона (взаимной экранировкой протона и нейтрона), поэтому данные для рассеяния электронов на нейтронах менее точны, чем на протонах. Тем не менее был определен магнитный формфактор нейтрона.  [c.132]

Рассмотрим случай рассеяния дейтрона на ядрах. Отличительной особенностью такого типа реакций является то, что при столкновении с ядром мишени дейтрон может расщепиться на два нуклона. В самом деле, энергия связи нейтрона и протона в дейтроне составляет всего лишь около 2,23 МэВ, тогда как энергия связи а-ча-  [c.240]


Результаты опытов по изучению рассеяния электронов на ядрах позволяют получить распределение заряда в ядре. Из опытов по изучению рассеяния быстрых электронов на протонах и дейтронах можно получить распределение заряда и распределение магнитного момента по объему нуклона (протона и нейтрона).  [c.98]

Формфакторы нейтрона получают аналогичным образом из сравнения результатов рассеяния электронов на протоне и дейтроне. Так как полный заряд нейтрона равен нулю, то  [c.102]

Казалось бы, зная только полное сечение а, нельзя получить сведения о триплетном сечении и синглетном в отдельности. Однако на самом деле разделение триплетного и синглетного рассеяния оказывается возможным благодаря тому, что зависимость сечения от энергии может быть предсказана теоретически. Именно, в теории доказывается, что если при параллельных спинах протона и нейтрона существует только одно связанное состояние (дейтрон), то зависимость триплетного сечения от энергии в первом приближении выражается в низкоэнергетической области формулой  [c.178]

Так как энергия связи в дейтроне аномально мала и так как нейтрон дейтрона 90% времени находится вообще вне поля действия сил со стороны протона (см. гл. V, 2), то рассеяние электрона высокой (сотни МэБ и выше) энергии на нейтроне дейтрона будет идти почти так же, как на свободном нейтроне. Электрический форм-фактор пиона был измерен в экспериментах, в которых пучок отрицательных пионов с энергией 100 ГэВ рассеивался на атомных электронах мишени. Рассеяние пучка тяжелых частиц на легких (почти в 300 раз легче) частицах мишени очень невыгодно энергетически. Однако энергия 100 ГэВ настолько велика, что соответствующая энергия в СЦИ оказывается равной около 200 МэВ, что согласно (4.64) достаточно для определения среднеквадратичного радиуса пиона.  [c.388]

Опыты по рассеянию медленных нейтронов свободными протонами также не дают возможности ответить на этот вопрос, так как в формулу для сечения рассеяния медленных нейтронов протонами входит квадрат этого параметра. Ниже мы увидим (см. 6), что, изучая рассеяние медленных нейтронов в молекулярном пара- и ортоводороде, можно путём сравнения теоретических выводов с экспериментальными результатами показать, что связанное состояние системы нейтрон - - протон возможно только при параллельной ориентации спинов. Иными словами, в дейтроне спины частиц имеют одинаковую ориентацию.  [c.10]

Различие между этими задачами заключается лишь в том, что при рассмотрении рассеяния нейтронов протонами система нейтрон + протон имеет положительную энергию, в то время как при рассмотрении задачи об основном состоянии дейтрона мы имеем дело с отрицательной энергией. С этим связано различное асимптотическое поведение волновых функций обеих задач. В задаче о рассеяния волновая функция на бесконечности осциллирует и отлична от нуля, в задаче же об основном состоянии дейтрона она обращается в нуль.  [c.24]

Предлагается метод описания рассеяния и связанных состояний двух частиц (безразлично, элементарных или составных), взаимодействие которых состоит из коротко- и дальнодей-ствующего слагаемых с сильно несоизмеримыми радиусами действия. Метод представляет собой обобщение теории рассеяния протона на протоне Ландау-Смородинского, описывающей совместное действие кулоновских и ядерных сил, на случай сил любой природы и на случай составных частиц. Как пример решена задача упругого рассеяния протона на дейтроне при малых энергиях путем сведения ее к аналогичной задаче рассеяния нейтрона на дейтроне.  [c.298]

С помощью некогерентного рассеяния изучаются также молекулярные вращения, диффузия протонов в металлах и т. д. Применение т. н. метода изогопич. контраста, состоящего в замене протона на дейтрон, позволяет исследовать динамику отд. частей сложных молекул и получать информацию о характере хим. связи в молекулах.  [c.344]

Интерпретация экспериментальных данных на основе ф-лы (1) из-за отсутствия нейтронных мишеней возможна только для процесса рассеяния электронов па протонах. Информацию о поведении форм-факторов нейтрона при больших передаваемых импульсах получают гл. обр. из данных по неупругому рассеянию электронов на дейтронах е -Ь с1 —- е + р н. Принципиальная трудность, с к-рой сталкивается теория рассеяния электронов на дейтронах, — отсутствие решения релятивистской проблемы двух нуклонов. При изучении Э. с. нейтрона в области больших передаваемых импульсов неплохое приблишепие можпо получить, пренебрегая интерференцией амплитуд рассеяния электрона на нейтроне и протоне. Это приближение тем лучше, чем больше передаваемый импульс (т. к. амплитуда интерференционного члена уменьшается вследствие уменьшения фурье-образа дейтронной волновой ф-ции). Интегральное эффективное сечение неупругого рассеяния электронов дейтронами приближенно может быть записано в виде  [c.464]


Существует еще одна проблема, связанная с рассеянием нейтронов в тяжелой воде. В разд. 7.1.4 отмечалось, что рассеяние на протонах, т. е. ядрах легкого водорода с произвольно ориентированными спинами, почти полностью некогерентно. Однако это не так для рассеяния нейтронов на дейтронах с произвольно ориентированными спинами, для которых микроскопические сечения когерентного и некогерентного рассеяний равны соответственно а ог = = 5,4 барн и а еког = 2,2 барн. Следовательно, должны быть рассмотрены эффекты интерференции в процессе рассеяния на двух дейтронах в молекуле DoO. Кроме того, в рассеяние нейтронов тяжелой водой вносит относительно большой вклад атом кислорода, и рассеяние на нем может интерферировать с рассеянием на дейтронах. Эти эффекты интерференции необходимо учитывать при уточнении приведенной выше модели [73].  [c.286]

Последоват. описание структуры адронов на основе совр. теории сильного взаимодействия — квантовой хромодинамики — пока встречает теоретич. трудности, однако для мн. задач вполне удовлетворит, результаты даёт описание взаимодействия нуклонов, представляемых как элементарные объекты, посредством обмена мезонами. Эксперим. исследование пространств, структуры Н. выполняется с помощью рассеяния высокоэ-нергвчных лептонов (электронов, мюонов, нейтрино, рассматриваемых в совр. теории как точечные частицы) на дейтронах. Вклад рассеяния на протоне измеряется в отд. эксперименте и может быть вычтен с помощью определ, вычислит, процедуры.  [c.268]

П. я. р. были открыты в нач. 50-х гг. 20 в. Первыми были обнаружены реакции дейтронного срыва (d, р) и п о д X в а т а (р, d) на лёгких ядрах. Образующиеся в этих реакциях протоны и дейтроны вылетают в основном вперёд (в направлении пучка налетающих частиц). Известны П. я. р., в к-рых нуклон или группа нуклонов переходит от одного из сталкивающихся ядер к другому (реакции передачи), реакции квазиупругого рассеяния (р, 2р), процессы с выбиванием из ядра дейтронов, т. е. реакции (p,pd), и т. д.  [c.171]

Нашей задачей является изучение взаимодействий в системах протон — протон (р—р), нейтрон — протон (п—р) и нейтрон — нейтрон (п—п). Фактически к настоящему времени изучены лишь две из этих систем р—р и п—р. Система же п—п до настоящего времени не поддается экспериментальному изучению из-за отсутствия нейтронных мишеней. Поэтому существующие методы изучения системы п—п либо не совсем чистые, либо сравнительно косвенные. Например, рассеяние п—п при высоких энергиях изучают, бомбардируя нейтронным пучком дейтронную мишень. При этом предполагают, что если энергия Еп падающих нейтронов значительно превышает энергию связи = 2,23 МэВ дейтрона (Еп > св). то падающие нейтроны рассеиваются независимо на протоне и нейтроне дейтрона. Такая аппроксимация называется импульсньш приближением-, точность и пределы применимости этого приближения, однако, до сих пор не вполне ясны, так что этот метод не вполне чистый. При низких энергиях сведения о нейтрон-нейтрон-ном рассеянии можно получить, изучая угловые и энергетические распределения нейтронов в ядерных реакциях с вылетом двух нейтронов. Например, использовались реакции  [c.169]

Изучение (и—р)-рассеяния при малых энергиях, а также анализ опытов по рассеянию очень медленных нейтронов на орто- и параводороде показали, что ядериые силы сильно зависят от взаимной ориентации спинов нейтрона и протона. При противоположной ориентации спинов (и—р)-взаимодействие оказывается слабее, чем при одинаковой, В последнем случае нейтрон и протон могут образовывать связанное состояние—дейтрон. Квантово-механическое рассмотрение этого вопроса показывает, что условием существования связанного состояния в прямоугольной потенциальной яме является неравенство а У>10 MэB м где а—радиус, а V—глубина ямы. При а=1,4-10 см и А1У—2,22 МэБ глубина ямы должна быть Ко 60 МэБ. Такие параметры ямы соответствуют образованию простейшего атомного ядра—дейтрона. Дейтрон имеет спин 1=1, большой радиус / =4,32 10" см и отличный от нуля квадрупольный электрический момент. Последний результат указывает на тензорный характер ядерного взаимодействия.  [c.62]


Смотреть страницы где упоминается термин Рассеяние протона на дейтроне : [c.554]    [c.386]    [c.448]    [c.241]    [c.695]    [c.13]    [c.464]   
Смотреть главы в:

Труды по теоретической физике и воспоминания Том1  -> Рассеяние протона на дейтроне



ПОИСК



Дейтрон

Протон

Протоны, рассеяние протонам



© 2025 Mash-xxl.info Реклама на сайте