Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние различных факторов на характеристики выносливости

Будем рассматривать предел выносливости, полученный в результате испытания нормальных лабораторных образцов, как одну из механических характеристик данного материала. Таким образом, можно сказать, что пределы выносливости конкретной детали и материала, из которого она изготовлена, различны. Влияние факторов, от которых зависит соотношение между пределами выносливости материала (нормального образца) и детали, более или менее полно изучено лишь для симметричного цикла напряжений. Поэтому, не оговаривая этого каждый раз специально, в дальнейшем рассмотрим влияние различных факторов на величину предела выносливости только при симметричном цикле.  [c.412]


ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА ХАРАКТЕРИСТИКИ ВЫНОСЛИВОСТИ  [c.295]

На сопротивление усталости деталей машин и частей сооружений оказывает существенное влияние ряд факторов состав и структура материала вид напряженного состояния и характер изменения его во времени форма и размеры нагружаемых объектов состояние поверхности остаточная напряженность температура активность окружающей среды и др. В связи с этим определить расчетным методом пределы выносливости для реальных конструкций, в которых, как правило, действуют многие из перечисленных выше факторов, чрезвычайно трудно. В настоящее время ведутся активные исследования, касающиеся вскрытия природы усталостного разрушения [65, 145, 177] и разработок аналитического прогнозирования усталостных характеристик для различных конкретных практических случаев [73].  [c.17]

В большинстве случаев испытания на выносливость проводят на лабораторных образцах цилиндрической формы, диаметром 7—10 мм, имеющих полированную поверхность. Величину предела выносливости, полученную в результате испытания таких (нормальных) образцов будем считать одной из механических характеристик материала. Если подвергнуть испытанию на выносливость серию специальных образцов, подобных какой-либо конкретной детали, т. е. отличающихся от нормальных образцов наличием концентратов напряжений, абсолютными размерами, качеством обработки поверхности (или только некоторыми из перечисленных факторов), то, как правило, при одном и том же материале нормальных и специальных образцов предел выносливости, определенный при испытании последних, ниже. Таким образом, установлено, что пределы выносливости конкретной детали и материала, из которого она изготовлена различны. Влияние факторов, от которых зависит соотношение между пределами выносливости материала (нормального образца) и детали, более или менее полно изучено лишь для симметричного цикла изменения напряжений. Поэтому примем, что величины различных факторов, влияющих на пределы выносливости, определены при испытаниях в условиях симметричных циклов изменения напряжений.  [c.648]

Поскольку долговечность зубчатого колеса зависит ке только от уровня напряжений, но и от точности изготовления, чистоты обработки и т. д., то допускаемые напряжения для различных вероятностей неразрушения следовало бы выбирать по опытным кривым выносливости. За неимением таковых допускаемые напряжения можно определять теоретическим путем по вероятностному значению расчетного параметра механической характеристики. Влияние прочих факторов учитывается с помощью поправочных коэффициентов.  [c.325]


Практически во всех нормах и методиках расчета зубчатых передач на прочность значения рекомендуется устанавливать на основе обкаточных испытаний зубчатых колес на стендах (чаще с циркулирующим потоком замкнутой мощности) или на пульсаторах. В некоторых случаях при оценке допускаемых напряжений продолжают использовать значения базовых пределов выносливости, полученных модельными испытаниями на изгиб гладких или надрезанных (с концентраторами различной формы) образцов. Это во многом вызвано отсутствием в настоящее время достаточного количества экспериментальных данных, полученных испытаниями при обкатке зубчатых колес из различных материалов, способов упрочнения и режимов нагружения (чередования уровней и частотных характеристик нагрузок). Следует отметить, что в последующем усталостные испытания гладких и надрезанных образцов могут с успехом использоваться как дополнительные данные к результатам испытаний зубчатых колес для полной оценки влияния на усталостную прочность различных факторов конструктивных (форм и размеров концентраторов напряжений), технологических (способов упрочнения и параметров упрочненного слоя) и эксплуатационных (режимов нагружений) при тщательном соблюдении условий моделирования.  [c.106]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

В связи с разным характером усталостного разрушения при комнатной и повышенной температурах неодинаковым может оказаться влияние различных факторов на характеристики выносливости при соответствующих температурах. Например, наличие на поверхности образцов сплава ЖС6У мелкозернистого рекристаллизованного слоя приводит к повышению долговечности при комнатной температуре (при 0а=О,2 ГН/м N образцов без мелкозернистого слоя — 4,4-10 , со слоем — 21-10 ). При 154  [c.154]

В таблицах раздела I также дано большое число значений пределов мцосливости и других характеристик сопротивления усталости (коэффициенты влияния различных факторов на предел выносливости, соотношении между пределами выносливости при различных схемах усталостных III иитаний и др.), в том числе трещиностойкости при циклическом нагру-  [c.17]

Ввиду этого основны.м при испытании на надежность и срок службы является исследование рел<имов нагрузки агрегатов и оценка характеристик их выносливости. На работу гидравлической системы и ее агрегатов влияет большое число различных факторов. Влияние одних факторов легко учитывается при оценке действующих на агрегат или его узлы нагрузок (например, рабочее давление, температура) влияние других не может быть строго учтено из-за их стохастической природы (воздушные нагрузки, колебание скорости, влажность и т. д.). Все это создает неопределенность в учете внешних воздействий и придает задаче статистический характер. Напряжения, возникающие при этом в элементах конструкции агрегатов, будут являться случайной величиной.  [c.147]


Для решения этой задачи большую роль сыграли различные варианты статистических теорий прочности [1, 4, 14, 97]. Статистическая теория прочности наиболее слабого звена , предложенная Вейбуллом [97], позволила описать влияние абсолютных размеров образцов и неоднородности распределения напряжений на характеристики сопротивления хрупкому разрушению. Статистическая теория прочности Н. Н. Афанасьева [1 дала возможность охарактеризовать влияние конструктивных факторов на средние значения пределов выносливости деталей машин.  [c.59]

Основные закономерности зависимости предела выносливости от прочности были рассмотрены ранее. Они сводятся к тому, чта предел выносливости увеличивается менее интенсивно, чем предедг прочности, а также что с увеличением предела прочности и понижением пластичности более суш,ественно проявляется влияние концентрации напряжений, коррозионных сред, чистоты поверхности и т. п. Это не значит, что необходимо отказаться от использования высокопрочных материалов, однако следует весьма тш,а-тельно относиться к устранению и нейтрализации (с использованием различных конструктивных и технологических методов) действия различных факторов, способных привести к снижению характеристик сопротивления усталостному разрушению.  [c.51]


Смотреть страницы где упоминается термин Влияние различных факторов на характеристики выносливости : [c.57]    [c.81]    [c.80]   
Смотреть главы в:

Механические испытания и свойства металлов  -> Влияние различных факторов на характеристики выносливости



ПОИСК



Влияние Характеристики

Выносливость



© 2025 Mash-xxl.info Реклама на сайте