Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые Пределы усталости

Рис. 231. Изменение предела усталости хромистых и хромоникелевой сталей в зависимости от температуры испытания Рис. 231. Изменение <a href="/info/6767">предела усталости</a> хромистых и <a href="/info/36275">хромоникелевой сталей</a> в зависимости от температуры испытания

Между пределом усталости и временным сопротивлением [с/, для хромоникелевых сталей имеется такая зависимость  [c.439]

Цементация с последующей термической обработкой повышает предел выносливости стальных изделий вследствие образования в поверхностном слое значительных остаточных напряжений сжатия (до 40—50 кгс/мм ) и резко понижает чувствительность к концентраторам напряжений при условии непрерывной протяженности упрочненного слоя по всей поверхности детали. Например, после цементации на глубину 1,0 мм и закалки хромоникелевой стали (0,12% С 1,3% Сг 3,5% Ni) предел усталости образцов без концентраторов напряжений увеличился от 56 до 75 кгс/мм , а при наличии надреза — от 22 до 56 кгс/мм2. Дополнительно предел выносливости цементованных изделий может быть повышен дробеструйным наклепом.  [c.266]

На сопротивление усталости существенно влияет среда не только в смысле коррозии, но также в смысле температурных условий работы конструкций. Понижение температуры затрудняет пластическую деформацию и приводит к повышению выносливости, особенно для полированных образцов из малоуглеродистых пластичных и хладноломких сталей. В области закритической температуры для хрупкого состояния пределы выносливости приближаются к критическим напряжениям, достаточным для хрупкого разрушения и значительно (в 1,5—2 раза) превышающим значения o i для комнатной температуры при отсутствии концентрации напряжений. При наличии концентрации напряжений повышение (а 1)к также имеет место, но в меньшей степени (в 1,3—1,5 раза). Наименее выражено повышение пределов выносливости с понижением температуры у вязких хромоникелевых сталей и легких сплавов, не обладающих выраженной хладноломкостью. Однако  [c.160]

Коррозионная усталость, возникающая при комбинированном воздействии коррозионной среды и периодического или знакопеременного механического воздействия, резко ухудшает механические характеристики металла. Так, например, предел прочности низкоуглеродистых сталей после воздействия 10 циклов растяжение — сжатие при частоте 1500 циклов в минуту в воздухе, водопроводной и соленой воде уменьшается соответственно на 25, 14 и 5 кгс/мм -. Предел прочности хромоникелевых сталей типа 18 — 8 после 10 циклов в соленой воде понижается с 32 до 17,5 кг /мм .  [c.28]


На поверхности образцов нержавеющих хромоникелевых сталей при их циклическом нагружении в водной среде раковины не появляются, но сразу образуется сетка малозаметных поверхностных трещин глубиной порядка 0,01 мм. При числе циклов нагружения до десяти миллионов эти трещины особого влияния на сопротивление усталости не оказывают, однако при числе циклов нагружения в несколько десятков миллионов (т. е. при относительно низких уровнях циклических напряжений) указанные мелкие трещины, разрастаясь, приводят к разрушениям на таких уровнях напряжений, которые находятся ниже абсолютного предела выносливости, наблюдаемого при испытаниях на воздухе.  [c.169]

Общей закономерностью для машиностроительных материалов является повышение сопротивления усталости с понижением температуры. На рис. 16, по данным исследований [180], показаны пределы выносливости различных материалов в зависимости от температуры испытания (база 10 циклов). Как видно, существенное повышение сопротивления усталости с понижением температуры наблюдается не только для гладких образцов, но и для образцов с концентраторами напряжений. Нами были проведены испытания на усталость при температурах до —183° С образцов из мягкой углеродистой стали, хромоникелевой стали и особо твердой закаленной на мартенсит подшипниковой стали [80, 196 ].  [c.29]

Материал — хромоникелевая сталь, имеющая временное сопротивление Од = 83 кГ1мм , предел текучести при кручении = 38 кГ/мм и предел усталости при кручении t j= 21 кГ/мм поверхность вала—грубая шлифовка. Запас прочности = 2.  [c.604]

Машины для испытания изгибом в одной плоскости. Известные машины этого типа обычно приспособлены для испытаний образцов в форме пластин и служат главным образом для определения усталости листового материала. Небольшие размеры образцов позволяют производить вырезки заготовок для них из листов, поковок, штанг и определять пределы усталости материала. При испытаниях плоских образцов изгибом в одной плоскости было отмечено снижение пределов усталости некоторых сталей по сравнению с теми, которые были получены на круглых образцах при изгибе с вращением. Так, для хромоникелевых сталей (ХНВ, ХН1), хроман-силя (ЗОХГСА) и др. это снижение в среднем составило 20 /о [6/2]. В другом случае [33]  [c.74]

Для расчёта коленчатых валов из модифицированного чугуна ещё нет достаточно надёжных данных. Сравнительные испытания на знакопеременный изгиб, проведённые с коленчатыми валами из хромоникелевой стали (с пределом прочности = 86 кг1см ) и модифицированного чугуна, показали, что предел усталости у последних оказался ниже всего лишь на 25"/о.  [c.534]

Для разложения остаточного аустенита после цементации чаще применяют высокий отпуск при температуре 630—640° С, после чего следует закалка с пониженной температуры и низкий отпуск. Такая обработка также обеспечивает высокую твердость цементованного слоя. Цементация с последующей термической обработкой повышает предел выносливости вследствие образования в поверхностном слое значительных остаточных напряжений сжатия (до 40—50 кПмм ) и резко понижает чувствительность к концентраторам напряжений при условии непрерывного размещения упрочненного слоя по всей поверхности детали. Например, после цементации на глубину 1,0 мм и закалки хромоникелевой стали (0,12% С, 1,3% Сг, 3,5% Ni) предел усталости образцов без концентраторов напряжений увеличился от 56 кПмм до 75 кГ мм , а при наличии надреза — от 22 кГ/мм до 56 кГ/мм . Дополнительно предел выносливости цементированных изделий может быть повышен дробеструйным- наклепом. Цементованная сталь обладает высокой износостойкостью и контактной прочностью.  [c.253]

Повышение динамических качеств современных отечественных автомобилей потребовало применения высокопрочных сталей, отличающихся не только высокой износостойкостью, высоким пределом усталости, но и хорошей сопротивляемостью динамическим нагрузкам. В связи с этим, кроме конструкционных углеродистых сталей, тниро-кое распространение получили легированные стали, хромоникелевые, хромистые и др.  [c.15]


Прочность инваров 36Н и 36НХ невысока. Инвары не упрочняются термической обработкой и незначительно упрочняются при пластическом деформировании. Предел усталости а при 20 °С составляет 250 МПа на базе 10 циклов. По сопротивлению усталости инвар близок к хромоникелевой аустенитной стали 12Х18Н10Т. Ударная вязкость инваров мало изменяется с понижением температуры.  [c.393]

Склонность аустенитных хромоникелевых сталей типа 18-9 и 18-10 к снижению сопротивления усталости при воздействии морской воды зависит от их структурного состояния (Гликман Л.А. и др. [130, с. 16-26]). Условный предел коррозионной выносливости аустенизированной при 15,0—1070°С стали снижается несколько меньше ( на 20—25 %), чем этой же стали, подвергнутой отпуску 650°С (35 %). Аустенизирован-ная литая сталь хуже сопротивляется коррозионно-усталостному разрушению в 3 %-ном растворе Na I, чем кованая аустенизированная. Эта  [c.62]

МПа превышает предел выносливости) вследствие больших потерь на внутреннее трение образцы разогреваются и теряют устойчивость. Жидкая коррозионная среда при уровнях напряжений выше предела выносливости охлаждает образец и увеличивает его долговечность. Периодическое смачивание 3 %-ным раствором Na I нагретой до 230—250°С стали при низких амплитудах циклических нагрузок также резко снижает ее сопротивление усталостному разрушению. Условный предел выносливости снижается с 185 до 145 МПа. При уровнях циклических напряжений выше предела выносливости электрохимическое воздействие коррозионной среды не успевает существенно проявиться ввиду сравнительно небольшого времени до разрушения, в то время как из-за охлаждающего эффекта ограниченная долговечность стали увеличивается. Аналогичные результаты получены и другими авторами. Следует отметить, что такое заключение не является универсальным для разных металлов. Оно справедливо для тех металлов и сплавов, для которых повышение температуры образца (от комнатной и выше), например, в результате циклического деформирования/сопровождается монотонным снижением сопротивления усталости. К таким материалам относятся, в частности, хромоникелевые стали.  [c.63]

В таблице 38 приведены результаты испытаний четырех марок хромоникелевой стали, из которых одна (1) имела флокенй как видно из таблицы, наличие этого порока могло вскрыть только испытание на усталость все прочие характеристики (предел прочности и т. д.), полученные при статических испытаниях для всех четырёх марок, примерно одинаковы, а предел выносливости для первой марки резко снижен.  [c.765]

При низких температурах у сталей аустенитного класса повышаются пределы прочности, текучести и усталости, возрастает твердость, несколько снижается пластичность. Ударная вязкость хромоникелевых сталей при снижении температуры почти не меняется, а у хромистых и марганцовистых сталей уменьшается. Высокохромистые стали, несмотря на малую пластичность и незначительную сопротивляемость динамическим нагрузкам при низких температурах, все-таки применяют для изготовления деталей машин и приборов, предназначенных для работы при температурах до 77 К. Из этих сталей изготовляют детали, работающие на сжатие, и избегают применять их для изготовления деталей, которые могут подвергаться ударному изгибу или кручению. Так, сталь 20X13 применяют для изготовления клапанов поршневых насосов и арматуры, а также ненагруженных осей расходомеров сжиженных газов с температурой кипения до 77 К включительно, сталь 30X13 — для изготовления выпускного клапана воздушного поршневого детандера. Из стали 12X17 изготовляют шарики и обоймы подшип-  [c.23]

Предварительное пластическое деформирование неоднозначно влияет на характеристики сопротивле-Ю 30 50 70 90 ния усталости различных металлов II Максимальный размер Внлючеиии, МКМ сплавов. Предварительное пластическое деформирование заготовок повышает предел выносливости углеродистых сталей независимо ст характера наклепа (растяжение или сжатие) [062]. Результаты этих исследований приведены в табл. 2.3. Большой эффект наклепа при испытаниях углеродистых сталей объясняется повышенной склонностью этих сталей к старению в наклепанном состоянии. В то же время предел выносливости при изгибе образцов из хромоникелевой стали [25] и сталей 45, 12ХНЗА, 15ХСНД, 40Х [1053] может существенно снижаться (до 25%) после предварительной пластической деформации 1...3 %, если проводить испытания без последующей механической обработки поверхности. Наклеп волочением и прокаткой углеродистой и нержавеющей сталей [778] способствует повышению пределов выносливости.  [c.138]


Смотреть страницы где упоминается термин Хромоникелевые Пределы усталости : [c.118]    [c.150]    [c.136]    [c.24]    [c.71]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.154 ]



ПОИСК



Предел усталости

Усталость

Хромоникелевые

Хромоникелевые Пределы ползучести и усталости



© 2025 Mash-xxl.info Реклама на сайте