Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение задачи об обтекании произвольного тонкого профиля

Л. и. Седовым был предложен метод, позволяющий получить рещение задачи обтекания произвольного тонкого профиля, если известно решение двух задач, рассмотренных в 3 и 4 обтекания профиля без толщины и бесциркуляционного обтекания симметричного тонкого профиля.  [c.182]

Седов Леонид Иванович (1907-1999) — видный советский ученый в области механики и прикладной математики. Окончил Московский университет (1931 г.). С 1937 г. — профессор Московского университета, работал (с 1945 г.) в Математическом институте АН СССР. Основные работы по гидроаэромеханике, механике сплошной среды, теории подобия, аэроупругости. Обобщил теорему Жуковского для произвольного движения крыла построил теорию тонкого крыла, исследовал потенциальное обтекание газом профилей и решеток, развил нестационарную теорию решеток. В теории подобия решил ряд важных задач, в частности задачу о сильном взрыве, построил теорию автомодельных движений газа. Установил закон пульсаций в изотропной турбулентности. Разработал модели сплошной среды с учетом электродинамических явлений н метод решения задач на основе сформулированного им вариационного принципа. Автор ряда фундаментальных монографий по вопросам механики сплошной среды.  [c.479]


Широкое применение цифровых электронных вычислительных машин сделало целесообразным применение к задачам обтекания метода интегральных уравнений. В последние годы получают развитие численные методы построения течеций идеальной несжимаемой жидкости с помош,ью распределенных особенностей (вихрей, источников-стоков, диполей). Одним из преимущ еств этих методов по сравнению с методами комплексного переменного является возможность их применения для построения не только плоских, но и пространственных течений. Эти методы опираются на хорошо разработанную в математике обш,ую теорию потенциала. В 1932 г. П. А. Вальтер и М. А. Лаврентьев, пользуясь указанной обш,ей теорией, получили интегральное уравнение относительно интенсивности распределения вихрей вдоль криволинейного контура и предложили метод последовательных приближений для его решения. В статье М. А. Лаврентьева, Я. И. Секерж-Зеньковича и В. М. Шепелева (1935) указанный способ применяется к построению обтекания бипланной системы, состояш,ей из двух бесконечно тонких искривленных дужек. Задача сводится к решению системы двух интегральных уравнений методом последовательных приближений и доказывается сходимость такого процесса. В последние годы развивались численные методы расчета произвольных систем тонких профилей. С. М. Белоцерковский (1965) использовал схему замены вихревого слоя (как стационарного, так и нестационарного) конечным числом дискретных вихрей, сведя задачу к решению системы алгебраических уравнений. В работах А. И. Смирнова (1951) и Г. А. Павловца (1966) используется схема непрерывного распределения вихрей и с помощью интерполяционных полиномов Мультхопа расчет также сводится к решению системы алгебраических уравнений.  [c.88]

Задача о произвольной нестационарной деформации профилей или их движения при постоянной циркуляции в потенциальном потоке сводится к вычислению квадратурами типа (3.13) дополнительной касательной к контуру слагающей Vg скорости по ее заданной нормальной слагающей Vfi иди же к решению соответствующей неоднородной задачи относительно функции тока или потенциала течения вытеснения . Первая задача такого рода — о плоском движении жидкости в треугольной полости вращающегося тела — была решена Н. Е. Жуковским в 1885 г. (эта задача имеет отношение к течению во вращающейся радиальной решетке с прямыми лопатками). Вращение одиночного тонкого профиля и двух профилей тандем было изучено Л. И. Седовым в 1935 г. затем им же был дан общий подход к решению подобных задач в рамках теории тонкого профиля. Общие свойства потока через вращающуюся круговую решетку и, в частности, ее конформное отображение на прямую рассмотрел П. А. Вальтер в 1926 г. Основные задачи обтекания таких решеток решены Г. И. Майка-паром (1949, 1953, 1958, 1966), Л. А. Дорфманом (1956), Т. С. Соломаховой  [c.125]


В двух работах (относящихся к 1956 г.) М. Д. Хаскинд, рассматривая решетку пластин с выносом, а также произвольную систему отрезков одной прямой, использует метод решения, развитый им ранее в задаче о колебании тонкого одиночного профиля в дозвуковом потоке газа (1947). Амплитудные значения комплексного потенциала возмущения разбиваются на две части ш (z) = Wq (z) + (z) wq (z) определяет бесциркуляционное обтекание решетки с заданной нормальной скоростью а (z) соответ- ствует решению однородной задачи циркуляционного обтекания неподвижной решетки в присутствии свободных вихрей. Для того чтобы найти z i(z),4T0 представляет основную трудность, вводится аналитическая функция  [c.138]


Смотреть главы в:

Лекции по гидроаэромеханике  -> Решение задачи об обтекании произвольного тонкого профиля



ПОИСК



Задача обтекания

Обтекание

Произвольный вид



© 2025 Mash-xxl.info Реклама на сайте