Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серебро Магнитные свойства

Магнитные свойства. По магнитным свойствам все металлы делятся на две группы — диамагнитные и парамагнитные. При внесении диамагнитного металла в магнитное поле оно уменьшается, а при внесении парамагнитного металла магнитное поле усиливается. К диамагнитным металлам относятся бериллий, сурьма, висмут, медь, золото, серебро, цинк, кадмий, ртуть и др. К парамагнитным металлам относятся алюминий, кальций, барий, молибден, вольфрам и др.  [c.81]


Магнитные свойства. По данным [59] богатые серебром сплавы системы 1п — А со структурой а-твердого раствора диамагнитны. Магнитная восприимчивость этих сплавов составляет  [c.467]

По особенностям магнитных свойств все материалы и вещества могут быть разделены на два вида парамагнетики и диамагнетики. Парамагнетики отличаются тем, что при помещении их в магнитное поле они усиливают его внутри себя вследствие совпадения их намагничивания с направлением внешнего поля. Диамагнетики ослабляют внутри себя магнитное поле, действующее извне, вследствие того что их намагничивание направлено против внешнего поля. К Диамагнетикам относятся медь, золото, серебро, цинк и др.  [c.339]

Сплавы Сг—Мо, Сг—N1—Со и другие используются для получения износостойких покрытий. Покрытия сплавом Ш—Со обладают высокой твердостью, химической стойкостью. Такое покрытие растворяется в серной кислоте в 3,6 раза медленнее, чем никель, и в 32 раза, чем кобальт. Сплавы Со—N1 (15—35% Ы ) обладают особыми магнитными свойствами, высокой механической прочностью, износостойкостью, поэтому их применяют в радиотехнике, счетно-вычислительных и звукозаписывающих устройствах. Сплавы РЬ—5п, РЬ—5п—Си, РЬ—5п—5Ь могут использоваться для получения антифрикционных покрытий. Покрытия из сплавов Сё—N1 (9—23% обладают высокой стойкостью и механическими свойствами. Их применяют для защиты от коррозии аппаратов, работающих при высокой температуре в атмосфере с повышенной влажностью и продуктов сгорания органических веществ. Сплавы Ag—Сё обладают высокой твердостью, износостойкостью, которая при истирании в 6—8 раз больше износостойкости чистого серебра, высоким электросопротивлением (в 4—5 раз больше, чем у серебра).  [c.165]

О чем, в частности, свидетельствует сохранение и даже возрастание магнитных моментов, локализованных на их атомах, тогда как никель в таких сплавах теряет свой магнитный момент [11]. Термодинамические свойства сплавов таких систем, как Сг — Аи [12] и Мп — Ag [13], отражают специфический характер взаимодействия компонентов. Практически во всей области существования твердых растворов парциальные теплоты смешения для хрома и марганца положительны и аномально зависят от состава (возрастают с ростом содержания переходного металла), тогда как парциальные теплоты для золота и серебра отрицательны и малы по абсолютной величине (рис. 2). Можно полагать, что хром и марганец также претерпевают существенные изменения своего электронного состояния, входя в матрицу твердого раствора, однако эти изменения требуют определенных затрат энергии. Известно, что марганец и хром  [c.157]


Теплоемкость — одно из наиболее изученных свойств наночастиц. Интересны результаты исследования теплоемкости коллоидных наночастиц Ag и Аи в области очень низких температур 0,05—10,0 К в магнитном поле с плотностью магнитного потока 5 от О до 6 Тл [291]. При Г > 1 К теплоемкость наночастиц Ag d = 10 нм) и Au (d = 4,6 и 18 нм) в 3—10 раз больше тако-у, вой массивных образцов. Теплоемкость самых крупных частиц Ли ( = 18 нм) в области 0,2—1,0 К почти совпадает с ее величиной для массивного образца. С уменьшением размера частиц Аи от 18 до 6 нм дополнительный положительный вклад в теплоемкость сначала растет, а при дальнейшем уменьшении диаметра до 4 нм несколько понижается, но не исчезает и остается положительным даже для кластеров Аи, размером 1,5 нм. Измерения теплоемкости наночастиц серебра Ag в магнитном поле с В = 6 Тл обнаружили квантовый размерный эффект при Г < 1 К теплоемкость наночастиц Ag была меньше, а при Г > 1 К — больше таковой массивного серебра (рис. 3.10). Этот экспериментальный результат хорошо согласуется с теоретическими выводами [285] о квантовом размерном эффекте теплоемкости наночастиц. Аналогичный эффект на коллоидных частицах Аи наблюдать не смогли, так как их теплоемкость с ростом плотности магнитного потока становится неизмеримо мала.  [c.86]

Металлические элементы в зависимости от знака и величины их магнитной восприимчивости можно разделить на три класса диамагнетики (медь, серебро, золото с отрицательной и малой величиной х) парамагнетики (большая часть других металлов со слабо положительной величиной х) и ферромагнетики (х велика и положительна). Жидкие металлы и сплавы с ферромагнитными свойствами не известны. Полную восприимчивость металлической жидкости xi, можно представить в виде суммы восприимчивости ионных остовов атомов (диамагнитная восприимчивость) и восприимчивости электронов (парамагнитная)  [c.113]

Материалы по своему поведению в электрическом или магнитном поле подразделяются на проводящие, полупроводящие, диэлектрические (изоляторы), магнитные и немагнитные. Главное электрическое свойство вещества — это электропроводность, т. е. способность проводить электрический ток под действием постоянного (не меняющегося во времени) напряжения. Проводимость— мера этой способности. Обратная величина — сопротивление— измеряется в единицах СИ в Ом-м. Сопротивление— это такая физическая величина, которая, по-видимому, изменяется в наиболее широком диапазоне порядков. Например, вещества в сверхпроводящем состоянии практически не имеют сопротивления, тогда как сопротивление разреженных газов стремится к бесконечности. Сопротивление твердых материалов, с которыми мы будем иметь дело в этой книге, в нормальных условиях меняется в гигантском диапазоне в 25 порядков от 10 Ом-м для лучших металлических проводников, таких, как медь, серебро, алюминий, до 10 Ом-м для лучших диэлектриков, как некоторые полимеры. Мы будем придерживаться классификации, согласно которой вещества с сопротивлением меньше 10 Ом-м называются проводниками, больше Ю Ом-м — диэлектриками, а с сопротивлением из промежутка от 10- до 10 Ои-и —полупроводниками. На величину сопротивления вещества сильно влияют внешние условия, в частности давление и температура, и это нужно учитывать в этой условной классификации. Например, такой типичный полупроводник, как германий, при высоком гидростатическом давлении становится проводником, а при очень низкой температуре— " непроводящим материалом.  [c.19]

Другое явление, связанное с образованием твердых растворов металлов, заключается в развитии сверхструктуры при тщательном отжиге сплавов. Это превращение типа порядок — беспорядок приводит к образованию так называемых интерметаллнческих соединений. Некоторые примеры перестройки кристаллической решетки подобного рода известны и среди хорошо изученных двойных сплавов платппы или палладия (наряду со спла-DOM родия с медью). Из физических основ металловедения известно, что образование сверхструктуры может происходить в тех случаях, когда условия благоприятствуют хорошей взаимной растворимости, но когда радиусы участвующих в превращении атомов сильно разнятся, хотя и не настолько, чтобы полностью помешать образованию растворов. Интересно отметить, что образование сверхструктуры происходит, по-видимому, в сплавах платины или палладия с некоторыми обычными металлами (табл. 8), хотя сведений о том, что это явление наблюдается в двойных системах, образованных самими платиновыми металлами, не имеется. Ясно, что обычные металлы (см. табл. 8) отличаются по величине своих атомных радиусов от платиновых мета.7Лов, серебра и золота. Некоторые из этих упорядоченных структур с обычными металлами, особенно с кобальтом, обладают интересными магнитными свойствами.  [c.497]


За последние годы все более широкое применение находят сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово — цинк, кадмий — цинк, олово — кадмий и др.), антифрикционных свойств (олово — свинец, свинец—цинк, серебро — кадмцй, олово — свинец — сурьма и др.), высоких декоративных свойств (медь — золото, золото — серебро, никель — олово, медь — олово и др.), магнитных свойств (никель— кобальт, вольфрам — кобальт, никель — железо ц др.), специальных свойств, например сцепление с резиной (медь — цинк), как подслой под окраску (железо — цинк), для пайки (олово — свинец) и т. п.  [c.194]

В связи с широким развитием техники требуются покрытия с новыми специфическими свойствами, которылш зачастую электроосажденные слои отдельных металлов не обладают. За последние годы находят все более широкое применение сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово-цинк, олово-свинец, кад5лий-цинк, олово-кадмий и др.), антифрикционных свойств (сплавы олово-свинец, свинец-цинк, серебро-кадмий, олово-свинец-сурьма, и др.), высоких декоративных свойств (сплавы медь-золото, золото-серебро, никель-олово, медь-олово и др.), магнитных свойств (сплавы никель-кобальт, вольфрам-кобальт, никель-железо и др.), специальных  [c.208]

Магнитные свойства. Магнитную восприимчивость сплавов золота с серебром изучали в работах [26, 27, 34, 139]. Кривая изменения удельной магнитной восприимчивости сплавов в зависпмости от состава приведена на рис. 153 [139, 34].  [c.239]

Сплавы широко используют во всех областях науки и техники, так как совокупность их прочностных и технологических свойств очень часто значительно превосходит свойства чистых металлов. Сплав может быть в 8— 10 раз прочнее исходных чистых металлов, он может плавиться при более низких и или более высоких температурах, чем образующие его элементы. Сплав может отличаться от образующих его химических элементов и другими свойствами например сплав ферромагнитных (т. е. обладающих магнитными свойствами) металлов железа и никеля (25% никеля и 75% железа), называемый ферроникель, немагнитен при кбмнатных температурах. Наоборот, сплав немагнитных металлов марганца, серебра и алюминия обладает свойствами хорошего магнита.  [c.148]

Ср С = 1,4. Удельн. в. жидкого К. (при—182°) 1,118 удельн. в. твердого К. (при-227°) 1,27. Коэфициент расширения К. газообразного 0,00367, жидкого (при t° от-184° до-205°) 0,00385. Коэфициент преломления жидкого К. 1,2232. Теплота диссоциации молекулы К., на атомы 0а=0-1-0-162 al (цифра ненадежная). Коэф-т теплопроводности 0,000057 al M/ M K. °С. Диэлектрическ.постоянная 1,00054. При 1 atm в 100 объемах воды при 0° растворяется 4 объема К., а при 15°—3,4 объема. Благородные металлы в нагретом и расплавленном состоянии поглощают значи-тельн. количества кислорода при 450° серебро поглощает 4—5 объемов, золото 33—49, платина 63—77, палладий 0,07 объема К. на 1 объем металла. К., поглощенный расплавленным серебром, при охлаждении выделяется, разбрызгивая металл. Жидкий К.— голубая подвижная жидкость с магнитными свойствами. Магнитный момент =1, принимая для железа 1 ООО. Под действием тихого электрич. разряда или при освещении ультрафиолетовыми лучами К. частично превращается в озон (см.).  [c.121]

Порошковая металлургия позволяет получать композиционные материалы и детали, характеризующиеся высокой жаропрочностью, износостойкостью, стабильными магнитными и другими специаль-г(ыми свойствами. Возможность получения псевдосплавов из таких носплавляющихсл металлов, как медь—вольфрам, серебро—вольфрам и др., обладающих высокими электропроводимостью и стойкостью к злектроэроаиоиному изнашиванию, делает их незаменимыми для изготовления электроконтактных деталей. Пористые материалы в отдельных случаях становятся единственно приемлемыми для изго-  [c.417]

Диамагнетиками называются вещества, которые создают поле, ослабляющее внешнее магнитное поле. Диамагнитными свойствами обладают, например, серебро, свинец, кварц. Магнитная проницаемость диамагнетиков отличается от единицы не более чем на десятитысячные доли. Самый сильный из диамагпетиков — висмут — обладает магнитной пропицаемос г,ю, равной 0,999824,  [c.184]

Керамические материалы могут быть весьма разнообразны по свойствам и области применения в электротехнике используют керамические материалы в качестве полупроводниковых (стр. 265) и магнитных (ферр1ггы, стр. 283) материалов. Чрезвычайно большое значение имеют керамические диэлектрические, в частности электроизоляционные, а также сегнетоэлектрические и некоторые другие специальные керамические материалы. Многие керамические электроизоляционные материалы имеют высокую механическую прочность, очень малый угол диэлектрических потерь, значительную нагревостойкость и другие ценные свойства. По сравнению с органическими электроизоляционными материалами керамика, как правило, более стойка к электрическому и тепловому старению, не дает остаточных деформаций при продолжительном приложении к ней механической нагрузки. Металлизация керамики (обычно нанесением серебра методом вжигания) обеспечивает возможность осуществления спайки с металлом, что имеет особое значение для создания герметизированных конструкций.  [c.169]

По данным [46] на кривых изменения с составом электросопротивления, постоянной Холла и постоянных кристаллической решетки сплавов золота с серебром имеется разрыв непрерывности при составах, отвечающих химическим соединениям AuaAg, Au2Aga и AuAga. При исследовании внутреннего трения в сплавах, содержащих 58,5 и 68,0% Аи, был обнаружен температурный пик этой характеристики при 320°, который, по мнению авторов исследования [47], обусловлен упорядочением сплава под действием напряжений. Однако эти выводы опровергаются многочисленными исследованиями, выполненными различными методами физико-химического анализа (см. выше) и в том числе такими чувствительными, как рентгеновский, дилатометрический, магнитный, и измерением электрических свойств и термоэлектродвижущей силы. В ряде случаев определению свойств предшествовал длительный отжиг (7 суток) сплавов в интервале 700—1000° [7] и 850 часов при 600° [60].  [c.224]


Разработаны способы химического восстановления металлов из их соединений для получения проводящих покрытий из серебра, меди, золота, платины, никеля, кобальта, сурьмы и т. д. Химическим путем готовят также пленки из оксидов металлов и халь-когенидные пленки сульфидов и селенидов металлов. Не все эти пленки используются в гальванопластике в равной степени. Наиболее широко применяются пленки серебра и меди. Остальные пленки используют в тех случаях, когда проводящий слой должен обладать дополнительными свойствами, например магнитными, эмиссионными, полупроводниковыми и др.  [c.565]

Кроме днамагнетиков и парамагнетиков, существуют еще так называемые ферромагнетики — материалы, магнитная проницаемость которых значительно больше единицы и зависит от напряженности магнитного поля (у диамагнетиков и парамагнетиков этой зависимости нет и величина их магнитной проницаемости постоянна). Поэтому у ферромагнетиков зависит от напряженности также и намагниченность и индукция. В качестве магнитных материалов в электротехнике применяются ферромагнетики. К числу ферромагнетиков относятся железо, никель, кобальт и многие их оплавы и соединения ферромагнитными свойствами обладают также некого ры сплавы и соединения, содержащие алюминий, хром, марганец, медь, серебро.  [c.340]

Кроме диамагнетиков и парамагнетиков, существуют еще так называемые ферромагнетики — материалы, относительная магнитная npoHHnaeffiJ TB-T OTtjpffi sHM больше единицы и авйййт от напряженности магнитного поля. В качестве магнитных материалов в электротехнике применяются именно ферромагнетики. К числу ферромагнетиков относятся железо, никель, кобальт, гадолиний и многие их сплавы. Ферромагнитными свойствами обладают также некоторые сплавы и соединения, содержащие алюминий, хром, марганец, медь, серебро.  [c.289]

Электроконтактные металлокерамические материалы изготовляют из смеси порошков тугоплавких металлов с медью, серебром, никелем. Тугоплавкие металлы (Ш, Мо, Со, ШС, Сс1, N1) определяют механические свойства, легкоплавкие металлы служат наполнителем и придают материалам высокую электропроводимость. Получаемые материалы устойчивы к эрозии. Контакты изготовляют монометаллическими или биметаллическими. В соответствии с этим применяют различную технологию формообразования контактов. Метал-локерамические контакты применяют в магнитных пускателях, тен-  [c.316]

Электротехнические и магнитные материалы. Электрические контактные материалы должны обладать разнообразными свойствами высокой красностойкостью, жаропрочностью и сопротивлением электрической эрозии, соответственно высокими тепло- и электропроводностью, малой упругостью пара кроме того, не должно наблюдаться сваривания и прилипания при искрении. Лучшее сочетание этих свойств достигается в металлокерамических материалах. Кроме вольфрама и других ту-гонлавких элементов, применяется сплав, состоящий в основном из карбида вольфрама и кобальта, и сплавы для более легких условий работы на серебряной основе се-ребро-графит, серебро-никель, серебро-окись кадмия, серебро-окись свинца, сереб-ро-никель-вольфрам (или молибден) и др.  [c.1497]


Смотреть страницы где упоминается термин Серебро Магнитные свойства : [c.471]    [c.497]    [c.138]    [c.123]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.282 ]



ПОИСК



Серебро

Серебро Свойства



© 2025 Mash-xxl.info Реклама на сайте