Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платина Электрические свойства

Из благородных металлов изготавливают также коррозионностойкие и стабильные по электрическим свойствам электрические сопротивления, обычно в виде очень тонкой проволоки или фольги. Их используют и а качестве материала для нагревателей печей сопротивления с воздушной атмосферой, что позволяет получить температуру в печи до 1500°С (платина),  [c.278]

Электросопротивление. Электрические свойства сплавов золота с платиной изучали в работах [2—4, 7, 11, 12, 39, 41, 52—57, 66]. Данные [3] по изменению удельного электросопротивления при 25 и 100° и температурного  [c.184]


Термическое расширение. Изменение с составом коэффициента линейного расширения сплавов иридия с платиной при 300° показано на рис. 4И [16], Электросопротивление и температурный коэффициент электросопротивления. Удельное электросопротивление и температурный коэффициент электросопротивления сплавов по данным [1] приведены в табл. 246. Сведения об электрических свойствах сплавов приводятся также в работах [14—19, 39, 40]. Данные этих работ мало отличаются от полученных в работе [1]. Согласно [17] удельное электросопротивление и температурный коэффициент электросопротивления сплавов в отожженном состоянии составляют  [c.591]

Для растяжек и подвесов применяются нити из оловянисто-цинковой или бериллиевой бронзы, из сплава серебра с платиной, сплава кобальта с никелем и хромом. В особых случаях применяются кварцевые нити. В электроизмерительных приборах высокой чувствительности применяются нити, толщина которых не превосходит нескольких сотых долей миллиметра. Механические и электрические свойства материалов для растяжек и подвесов регламентируются ГОСТ 9444—60. Основными требованиями к материалам являются высокие антикоррозионные свойства, высокая стабильность механических характеристик. Указанным стандартом регламентируется и величина противодействующего  [c.597]

Чистая платина, для которой Лыо/ о= 1>3925, в наибольшей степени удовлетворяет основным требованиям по химической стойкости, стабильности и воспроизводимости физических свойств и занимает особое место в терморезисторах для измерения температуры. Именно платиновые термометры сопротивления используются для интерполяции международной температурной шкалы в диапазоне от —259,34 до 4-630,74 °С. В этом диапазоне температур платиновый термометр сопротивления превосходит по точности измерения термоэлектрический термометр. Но термометром сопротивления невозможно измерить температуру в отдельной точке тела или среды из-за значительных размеров его чувствительного, элемента кроме того, для измерения электрического сопротивления требуется посторонний источник электропитания.  [c.176]

Рутениевые покрытия в настоящее время не используются на практике, а между тем свойства металлургического рутения указывают на эффективность применения его для покрытия электрических контактов, кроме того, рутений менее дефицитен, чем платина и родий. К сожалению, технология получения рутениевых покрытий недостаточно отработана, но при усовершенствовании ее рутениевые покрытия могут с успехом заменить родиевые и платиновые.  [c.68]


Рутений менее дефицитен, чем платина и родий, и значительно дешевле как видно из табл. 31, рутений имеет наибольшую твердость и температуру плавления, он легко пассивируется на воздухе и очень хорошо противостоит действию агрессивных сред. На него не действуют разбавленные и концентрированные кислоты и щелочи. Рутений стоек к воздействию соединений фосфора и азота, в ряде случаев он превосходит по химической стойкости палладий, родий и платину он более устойчив к воздействию серы. Пленки сернистых соединений, образующиеся на поверхности, отрицательно сказываются на переходном электрическом сопротивлении. При обычных и повышенных температурах на воздухе и в среде, богатой кислородом, рутений не тускнеет и сохраняет блеск, что позволяет использовать его при покрытии отражателей. Рутений в отличие от платины и палладия не поглощает водорода и не образует гидридов. Несмотря на хорошие физико-механические свойства рутений недостаточно широко используется в промышленности. Одной из причин этого является сложность изготовления деталей из рутения вследствие высокой температуры плавления, высокой твердости и хрупкости. Рутений подвергается высокотемпературному окислению, как и родий образующаяся окисная пленка обладает хорошей электропроводностью.  [c.76]

Принцип действия термометров сопротивления основан на свойстве металлов изменять электрическое сопротивление с изменением температуры. Термосопротивления для измерения стационарных температур различных сред в производственных и лабораторных условиях изготовляют стандартными по установившимся формам, габаритам и электрическим параметрам. Термочувствительные элементы выполняют из платины, меди и никеля.  [c.112]

Платина — родий. Как контакт- ный материал наиболее известен сплав с 10 % Нк. Он имеет высокие механические свойства (твердость и прочность на разрыв вдвое больше, чем у платины) и большое электрическое сопротивление, обладает малой летучестью при высокой температуре. Используется для свечей зажигания.  [c.301]

Принцип действия термометров сопротИ Вления основан на свойствах металлов изменять свое электрическое сопротивление с изменением температуры. Наибольшее распространение имеют термометры сопротивления, изготовленные из платины (до 500°С) и меди (до 150°С). Теплочувствительный элемент термометра сопротивления наматывается на каркас, выполненный обычно из кварца или фарфора и имеющий сравнительно большие размеры. Поэтому термометром сопротивления нельзя измерить температуру в точке. Им можно только измерить среднюю температуру определенного участка.  [c.83]

Добавление к платине или палладию элементов, упомянутых выше в этом разделе, приводит к изменению физических свойств, которое даст некоторые практические преимущества сплавам перед чистыми металлами. Вообще легирующие элементы обычно повышают удельное электрическое сопротивление, твердость и предел прочности при растяжении этих металлов. Добавление других металлов платиновой группы или золота способствует повышению стойкости их против потускнения и коррозии при действии различных химикалий.  [c.497]

Рений из-за его высокой тугоплавкости и большой термоэлектродвижущей силы применяют для нагревательных элементов приборов, термопар (рабочая температура достигает 2600° С), а из-за высокой прочности и твердости — для электрических контактов и наконечников перьев. Благодаря ценным механическим и физико-химическим свойствам рений часто стали применять вместо платины.  [c.174]

Фторопласт-4 — материал с исключительно высокими диэлектрическими свойствами, совершенно не смачивается водой и не набухает, обладает высокой термической и химической стойкостью, по стойкости к агрессивным средам превосходит золото и платину. Твердость фторопласта-4 невысокая. Он текуч на холоде, и поэтому его используют для изготовления деталей методом холодной прессовки с последуюш,им спеканием. Фторопласт-4 используют как изоляционный материал в технике сверхвысоких частот и для изготовления химически стойких деталей. Тонкие пленки (0,02—0,04 мм) используют для пазовой изоляции электрических машин и для изготовления пленочных конденсаторов.  [c.41]


Электрические термометры сопротивления (э. т. с.) предназначены для измерения температуры в пределах от —200 до +650° С. Принцип действия электрического термометра основан на свойстве его чувствительного элемента, выполненного из металла (платины или меди), изменять свое сопротивление в зависимости от температуры.  [c.301]

Действие термометра сопротивления основано на изменении электрического сопротивления чувствительного элемента при изменении температуры. В качестве стандартных, промышленно выпускаемых термометров сопротивления благодаря своим свойствам нашли применение термометры ТСП и ТСМ с материалом чувствительного элемента из платины и меди соответственно [5, 6]. Пример конструктивного исполнения таких термометров приведен на рис. 6.4.1.  [c.913]

В термометрах сопротивления использовано свойство некоторых проводников (платины, меди) однозначно и монотонно изменять электрическое сопротивление с изменением температуры. Такие термометры представляют собой отрезок проволоки, намотанной на каркас и заключенный в за-  [c.1624]

Весьма точным прибором, пригодным для измерения не только осредненных по времени скоростей, но также и мгновенных скоростей пульсирующего турбулентного потока, является термоанемометр, представляющий собой тонкую короткую проволочку, нагреваемую пропускаемым через нее электрическим током. При погружении в поток газа или жидкости проволочка охлаждается тем сильнее, чем больше скорость потока. С уменьшением же температуры проволочки увеличивается ее электрическое сопротивление, которое определяется по разности напряжений на ее концах, измеряемой милливольтметром или осциллографом. Проволочку изготовляют из платины, учитывая постоянство ее электрических и термических свойств, а также высокую температуру плавления. При измерении скоростей движения воды ввиду ее электропроводности (вследствие имеющегося в ней обычно загрязнения) проволочку запаивают в стеклянную трубку, толщину которой принимают с учетом величины и изменчивости измеряемых скоростей, а также силы тока, пропускаемого через проволочку. Диаметр проволочки должен быть равен примерно 0,1 мм, внешний диаметр стеклянной трубки составляет 0,25—0,3 мм, длина проволочки — около 10 мм. Такие малые размеры прибора позволяют измерять распределение скоростей в очень малых моделях и, что особенно ценно, в непосредственной близости от ограничивающих поток стенок.  [c.66]

Вещества, для которых а пренебрежимо мала, называются изоляторами или диэлектриками. Их электрические и магнитные свойства полностью определяются величинами к и р.. Для большинства веществ магнитная проницаемость ,1 практически равна единице. Если это не так, т. е. если р заметно отличается от единицы, то мы называем такое вещество магнетиком. В частности, если р > 1, то вещество называют парамагнетиком (например, платина, кислород, азот), если же (к 1,— то диамагнетиком (например, висмут, медь, водород, вода).  [c.26]

При создании же ЧЭ платиновых термометров сопротивления приходится встречаться с рядом трудностей. Материал, выбираемый для изготовления каркаса ЧЭ термометра, должен обладать высокими электрическими изоляционными свойствами, хорошей теплопроводностью и механической прочностью. Кроме того, материал каркаса не должен оказывать вредного влияния на платину. Коэффициент линейного расширения материала каркаса должен быть близким коэффициенту линейного расширения платины. Для изготовления каркасов ЧЭ платиновых термометров сопротивления применяют слюду, плавленый кварц, специальную керамику и другие материалы.  [c.197]

Действие термометров сопротивления основано на свойстве металлов увеличивать свое электрическое сопротивление при нагревании. Для изготовления термочувствительных элементов термометров сопротивления используют металлы, имеющие больпюй коэффициент сопротивления а платину, медь, никель, железо. Термометры сопротивления имеют значительные габариты, что не позволяет устанавливать их в небольших по размеру образцах. Более совершенны полупроводниковые термометры сопротивления, они характеризуются малой термической инерционностью и пригодны для быстро изменяющихся температур.  [c.213]

Платина—бериллий. Бериллий растворяется в платине в твердом состоянии до 0,25%. Небольшие добавки бериллия очень эффективно изменяют свойства платины. Добавка 0.25% Be увеличивает твердость платины эквивалеит110 добавке 25% 1г (фиг, 31), Сплавы 14 с Be иашли широкое применение в Германии во время второй мировой войны как заменители сплавов Pt с 1г Pt с Rh для электрических контактов, сопротивлений, сосудов для плавки стекла и других целей.  [c.417]

Электрические контакты предназначаются для размыкания и замыкания ьлектрических цепей реле, магнето, регуляторов напряжения и других аппаратов. Благородные металлы и их сплавы обладают Biii oKOft температурой плавления и кипения, низкой упругостью паров и не окисляются на воздухе при высокой температуре. Поэтому они широко применимы во всех ответственных случаях. Самыми стойкими против коррозии являются снлавы на основе платины и золота. Сплавы палладия могут покрываться цветами побежалости при нагревании. Сплавы серебра тускнеют в присутствии сероводорода. В табл. 33 указаны составы, свойства и области применения металлов и сплавов для электрических контактов.  [c.437]

Все металлы платиновой группы характеризуются высокой химической стойкостью па воздухе они покрываются тонкой окнс-иой пленкой н длительное время сохраняют первоначальный вид. Основные физико-химические свойства их приведены в табл. 31 Платиновые покрытия стойки в агрессивных средах и не окисляются даже при 110 °С. поэтому они применяются для работы при высокой температуре в коррозионной атмосфере. Коэффициент отражения платины в видимой части спектра 70 %, в инфракрасной — 96 %. Платиновые покрытия также характеризуются высокой стойкостью в условиях механического и эрозионного износа и поэтому пригодны для покрытия электрических контактов.  [c.74]


Для солей никеля характерно двухвалентное состояние простые соли трехвалентного никеля получены не были. Никель широко применяется для получения высококачественных легированных сталей, обладающих различными техническими свойствами (прочность, вязкость, жаростойкость, химическая инертность и др.). Никель входит в состав ценных технических сплавов, обладающих высокой прочностью и химической стойкостью (нейзильбер), высоким электрическим сопротивлением (нихром, никелин), малым температурным коэффициентом расширения (инвар, платинит), химической стойкостью (монель-металл). Широко применяется нанесение на металлические поверхности защитных или декоративных покрытий из никеля — никелирование. Гидрат окиси никеля используется в щелочных (железоникелевых и кадмиевоникелевых) аккумуляторах.  [c.386]

Это происходит потому, что при высоких температурах мачи- ается заметное испарение платимы (и изменяется Ro термометра) испарившаяся платина оседает на кварцевом каркасе, в результате чего ухудшаются свойства К варща как электрического изолятора.  [c.116]

Критическая нанряженность электрического поля зависит от свойств материала суспензии. Суспензии благородных металлов, поверхность которых свободна от окисных пленок, имеют значительно меньшую критическую напряженность по сравнению с окисленными металлическими поверхностями. Окисная пленка является своеобразным изолятором, обусловливающим рост критической напряженности поля. Если критическая напряженность поля для окиси алюминия составляет 4000 В/см, то для частиц платины она снижается до 20 В/см.  [c.232]

Эрозия обычно сопровождается переносом металла с одного контакта на другой. Факторами, влияющими на эрозию контактов, являются параметры электрической цепи, в которой работают контакты, и свойства материала контактов. К свойствам материала, влияющим на эрозию, относится способность металлов к дугообразованию, которое определяется, при прочих равных условиях, минимальным напряжением дуги и минимальным током. Наиболее стойкими материалами в отношении образования дуги являются вольфрам и платина.  [c.536]

Одной из главных операций при изготовлении термопар является пайка или сварка термоэлектродов. При пайке контакт термоэлектродов осуществляется через материал припоя, т. е. в термоэлектрическую цепь входит еще один проводник. При сварке имеется непосредственный контакт термоэлектродов, но пограничная область между ними представляет собой сплав промежуточного состава. Однако т. э. д. с. термопары не зависит от того, сварены или спаяны ее термоэлектроды, если только весь спай находится при одной и той же температуре (см. гл. 4, 1). Предпочтительность пайки или сварки определяется целиком свойства [и термоэлектродов и припоя. Единственное требование, которое необходимо выполнять, — это обеспечение хорошего контакта термоэлектродов и достаточной прочности места контакта. Некоторые частные рекомендации сводятся к следующему практически любые термопары (платина-платиноро-диевая, железо-константановая, хромель-алюмелевая и т. д.) можно сваривать в пламени горелки с кислородным дутьем в случае термопар из неблагородных металлов сварка ведется под слоем флюса, например буры платина-платиноро-диевую термопару иногда сваривают при помощи электрической дуги (лучше постоянного тока) медь-константановую термопару можно паять как серебром, так и оловом. Перед пайкой (сваркой) термоэлектроды следует тщательно вымыть при монтаже термопар следует избегать изгибов, натяжений и других деформаций проволок.  [c.152]

Для слабонагруженных контактов применяются чистые благородные металлы платина, палладий, серебро, золото, а также вольфрам и молибден. Платина на воздухе не окисляется и не склонна к образованию дуги, но склонна к образованию мостиков и игл при малых токах платина чаще применяется в сплавах с другими металлами, в частности с иридием — для наиболее ответственных прецизионных контактов. По ряду свойств к платине близок палладий он значительно дешевле платины и часто применяется вместо нее, хотя и несколько менее стоек против катодного распыления и окисления в воздухе. Широко применяются сплавы палладия с серебром. Золото весьма склонно к дугообразованию и эрозионному переносу оно применяется главным образом в сплавах с платиной, серебром, никелем. При применении чистого серебра следует учитывать его склонность к образованию дуги. Объемный перенос на серебряных контактах меньше, чем у платины и золота, что связано с окислением серебра в воздухе под влиянием электрических разрядов. Окислы серебра легко диссоциируют при сравнительно невысокой температуре (порядка 200°С), благодаря чему они очень мало влияют на стабильность контактного сопротивления. Тем не менее для прецизионных контактов с очень малым контактным давлением серебро не рекомендуется. В остальных случаях серебро широко применяют как в чистом виде, так и в сплавах с медью. Серебро очень интенсивно реагирует с серой, поэтому не следует применять серебряные контакты вблизи с серосодержащими материалами, например резиной.  [c.299]

В термометрах сопротивления использовано свойство некоторых проводников (платины, меди) однозначню и монотонно изменить электрическое сопротивление с изменением температуры. Такие термометры представляют собой отрезок проволоки, намотанный на каркас и заключенный в защитную оболочку. Платиновые термометры сопротивления предназначены для работы при температурах от —200 до 4-500°, а медные— от —50 до +100°.  [c.1173]

Из остальных сплавов платины с НИ, Ки и и , наиболее важные свойства которых приведены в табл. 4-1-5, для вакуумной техники особое значение имеют только сплав платины с 4% и, проволока из которого используется для изготовления сеток (см. раздел Использование в технике ), и платины с 40% КЬ, применяемый для изготовления термопар в паре с чистой платиной. В табл. 4-1-6 приведены данные о термоэлектродвижущей силе таких термопар при различных температурах. При измерении электрического сопротивления платины и ее сплавов необходимо учитывать, что удельное электрическое сопротивление возрастает с повышением содержания примесей и количества присадок в сплавах (иридий, никель, см., например, рис. 4-1-4). Кроме того, оно несколько зависит от степени деформации, например, величина электросопротивления при 20° С сильно деформированного сплава Р1 К1 (5% N1) уменьшается после отжига с 0,232 до 0,221 ом-мм /м, для Р11г (5% 1г)  [c.110]

Техническое применение палладия пока довольно ограниченно. В виде сплавов с родием, золотом или платиной он применяется для неокисляющихся электрических контактов и термопар. В сплаве с платиной идет на ко нтактные сетки для процесса окисления аммиака и на изготовление лабораторной посуды. В зубопротезной и медицинской технике, а также в ювелирном деле довольно часто применяют сплавы на основе палладия. Во всех случаях, где химическая стойкость палладия достаточна, рекомендуется применять палладий или его сплавы с платиной, так как палладий является наиболее дещевым металлом платиновой группы. Коррозионная устойчивость палладия хотя и очень велика, но заметно ниже, чем у платины. Палладий не тускнеет и не окисляется на воздухе даже при наличии сероводорода и сообщает это свойство серебру при введении в сплав с серебром до 40—50% Pd.  [c.578]


Смотреть страницы где упоминается термин Платина Электрические свойства : [c.418]    [c.139]    [c.301]    [c.340]    [c.50]    [c.532]    [c.138]    [c.75]    [c.258]    [c.21]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.275 , c.279 ]



ПОИСК



Платина

Платинит

Электрические свойства



© 2025 Mash-xxl.info Реклама на сайте