Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитные и вихретоковые методы контроля

Малое раскрытие дефектов делает неприемлемым использование радиационных методов контроля. В ряде случаев, главным образом для контроля соединений, выполненных контактной точечкой и шовной сваркой, могут быть применены магнитные и вихретоковые методы контроля, однако для большинства соединений этой группы они также неэффективны.  [c.354]

Магнитные и вихретоковые методы контроля  [c.354]


Наиболее простые объекты диагностики могут быть описаны системами дифференциальных уравнений. Например, при использовании магнитных и электромагнитных методов контроля (магнитопорошковый, ферро-зондовый, вихретоковый, радиоволновой и т. п.) математическая модель контролируемой машины строится на основе решения уравнений Максвелла.  [c.216]

Классификация. К средствам неразрушающего контроля (СНК) относят контрольно-измерительную аппаратуру, в которой используют проникающие поля, излучения и вещества для получения информации о качестве исследуемых материалов и объектов. Классификация видов и методов неразрушающего контроля (НК) приведена в ГОСТ 18353—79. В соответствии с ГОСТом НК подразделяют на девять видов магнитный, электрический, вихретоковый, радиоволновый, тепловой, оптический, радиационный, акустический и проникающими веществами. Каждый вид НК осуществляют методами, которые классифицируют по следующим признакам  [c.10]

Методы НРК подразделяются на следующие виды акустические, вихретоковые, магнитные, оптические проникающими веществами (капиллярные и течеисканием), радиационные, радиоволновые, тепловые, электрические. При контроле сварных соединений чаще применяются четыре метода радиационные, акустические, магнитные и испытания проникающими веществами.  [c.336]

К неразрушающим методам диагностики, применяемым для оценки состояния сварных соединений паропроводов отечественных энергетических установок, относятся визуальный и измерительный контроль, измерение твердости, стилоскопирование, ультразвуковая и магнитопорошковая дефектоскопия, цветная дефектоскопия с проникающим излучением, вихретоковый метод, дефектоскопия аммиачным откликом, метод магнитной памяти металла и металлографический анализ с реплик (и/или срезов металла) и с помощью переносного микроскопа. Большинство этих методов применяется для диагностирования сварных соединений по месту их расположения на коллекторах котлов и трассах паропроводов в соответствии с требованиями по НТД и ПТД [3, 15, 18, 42, 53].  [c.146]

В соответствии с классификацией методов неразрушающего контроля (НК) можно выделить оборудование для радиационного, ультразвукового, магнитного, вихретокового, капиллярного контроля, контроля герметичности. Широко применяются ультразвуковые, магнитные, вихретоковые и радиоволновые толщиномеры.  [c.465]

Вихретоковый метод основан на взаимодействии собственного электромагнитного поля катушки с электромагнитным полем вихревых токов, наводимых этой катушкой в контролируемом объекте. Когда к металлическому объекту контроля подносится катушка (датчик), по которой протекает переменный ток, в поверхностных слоях объекта наводятся вихревые токи. Магнитное поле (вторичное) этих токов направлено навстречу полю возбуждающей катушки. Характер распространения вихревых токов изменяется при наличии в металле повреждений или неоднородностей. При этом меняются симметрия, амплитуда и фаза вторичного магнитного поля. Это поле взаимодействует с возбуждающим полем, образуя результирующее поле, которое и несет в себе информацию о характере повреждения. О наличии в объекте контроля повреждений судят по изменению амплитуды и фазы тока в возбуждающей или приемной катушке. Часто для этой цели используют одну и ту же катушку — преобразователь (рис. 2.27).  [c.63]


Контроль неразрушающий радиационный. Термины и определения Контроль неразрушающий. Магнитно-феррозондовый метод Контроль неразрушающий вихретоковый. Термины и определения Контроль неразрушающий. Магнитопорошковый метод  [c.466]

Вихретоковый метод выявления поверхностных и подповерхностных дефектов основан на возбуждении в контролируемом изделии (или на его участках) вихревых токов и регистрации изменений создаваемых им переменных электромагнитных полей, связанных с нарушениями сплошности металла. Реализация метода осуществляется с помощью бесконтактных вихретоковых преобразователей (ВШ), представляющих собой катушки индуктивности с отдельными или индуктивно связанными обмотками. Для контроля все изделие или его часть помещают в поле датчика. Вихревые токи возбуждают переменным магнитным потоком Фо. Информацию о свойствах изделия датчик получает через магнитный поток Фg.  [c.282]

Российская система сертификации в области неразрушающего контроля (НК) во многом сходна с европейской [54] и охватывает следующие методы контроля магнитный (М), вихретоковый (В), тепловой (Т), оптический (О), радиационный (Р), акустический, в частности ультразвуковой (УЗ), проникающими веществами - течеискание (ПТ) и капиллярный (ПК), акустико-эмиссионный (АЭ). Введены три уровня квалификации персонала по НК - от первого (низшего) до третьего (высшего).  [c.288]

Методы неразрушающего контроля основаны на взаимодействии различных физических полей, излучений и веществ с контролируемыми материалами и изделиями. В соответствии с ГОСТ 18353-79 различают девять видов неразрушающего контроля акустический, вихретоковый, магнитный, оптический, проникающими веществами, радиационный, радиоволновой,тепловой,электрический.  [c.376]

Классификация видов НК в соответствии с ГОСТ 18353-79 основана на физических процессах взаимодействия поля или вещества с объектом контроля. В основе решения диагностических задач лежит прежде всего оптимальный выбор физического процесса, дающего наиболее объективную и1 формацию об объекте диагностирования. В зависимости от общности физических принципов, на которых они основаны, различают девять видов НК акустический, магнитный, тепловой, электрический, оптический, вихретоковый, радиационный, проникающими веществами и радиоволновой. Каждый из видов НК подразделяют на методы, отличающиеся следующими признаками  [c.22]

Рассмотрены основные методы неразрушающего контроля и диагностики радиационные, магнитные, вихретоковые, электрические, оптические, вибрационные, акустические, комплексные системы качества продукции, методы и средства медицинской диагностики, промышленная рентгеновская вычислительная томография, системы технического зрения. Специальные главы посвящены методам и средствам экологической и антитеррористической диагностики.  [c.4]

Векторы напряженности возбуждающего поля и поля вихревых токов Яв направлены навстречу друг другу ЭДС в обмотке датчика пропорциональна разности потоков (Фо Фд). При использовании проходных наружных ВТП обмотка 1 (рис. 6.46), питаемая синусоидальным током, создает переменное электромагнитное поле, которое возбуждает в изделии 2 вихревые токи. Их интенсивность и распределение по сечению изделия зависит от поперечных размеров, частоты тока, удельной электрической проводимости, относительной магнитной проницаемости слоев, а также от наличия дефектов сплошности материала. Поэтому амплитуда и фаза напряжения, измеряемая обмоткой 3, в общем случае является функцией многих переменных, что требует специальных методов разделения информации ВТП. Для контроля прутков, труб, проволоки и других протяженных объектов применяют вихретоковые дефектоскопы типа ВД-ЮД ВД-20П, ВД-ЗОП и их модификации. Они обеспечивают контроль изделий диаметром от 0,05 мм до 47 мм. Имеются дефектоскопы для контроля изделий диаметром до 135 мм. Скорость контроля у отечественных дефектоскопов достигает 5 м/с. Порог чувствительности дефектоскопов с проходными наружными ВТП к поверхностным дефектам составляет 1. ..5% от диаметра изделия.  [c.282]


Косвенный характер контроля. Некоторые специфические проблемы применения этого метода возникают вследствие косвенного характера контроля. Вихревые токи возникают в металлическом испытуемом образце при помещении его в магнитное поле переменного тока индукционной катушки. На прохождение тока влияют электрические свойства и форма испытуемого образца или наличие несплошностей и дефектов. В свою очередь изменение величины вихревых токов влияет на импеданс возбуждающей катушки или изменяет индуцированное напряжение датчика. Таким образом, влияние испытуемого образца может проявляться через изменение импеданса датчика. Вихретоковые испытания являются косвенными испытаниями, они не измеряют непосредственно любую конкретную характеристику образца. Скорее они определяют некоторую весовую функцию прохождения тока, которая косвенно связана с состоянием испытуемого образца. Эта весовая функция зависит от конструкции датчика, рабочей частоты и свойств испытуемого образца. В результате если изменяются условия испытаний, то становится трудно или почти невозможно определить отдельные контролируемые параметры по сигналу, получаемому при одночастотном методе, при котором возможно определение только одного или двух параметров.  [c.360]

Исходя из опыта эффективного применения методов неразрушающего контроля компрессорных и турбинных лопаток авиационных ГТД, их можно с уверенностью рекомендовать для обеспечения надежного и своевременного выявления усталостных трещин на лопагках турбокомпрессора ГПА. При этом применение методических разработок и аппаратуры с использованием ультразвукового, вихретокового, магнитного и капиллярного методов неразрушающего контроля не требует разборки ротора.  [c.9]

Все это коснулось и группы технической диагностики, которая выросла не только количественно с 5 человек (1993 г.) до 18 (1999 г.), но и качественно - в 1998 г. группа аттестована как лаборатория технической диагностики и неразрушающих методов контроля в Госгортехнадзоре с аккредитацией в Госстандарте России на техническое соответствие, компетентность и независимость. В лаборатории освоены и широко применяются практически все методы неразрушающего контроля, такие как визуальноизмерительный, акустические (акустико-эмиссионный контроль, ультразвуковая дефектоскопия, толщинометрия, твердометрия), контроль проникающими веществами - капиллярный (цветной и люминесцентный), магнитный (магнитопорошковый), вибродиагностика, вихретоковый. Большая часть сотрудников лаборатории имеет второй международный квалификационный уровень по вышеперечисленным методам неразрушающего контроля, а более 70 % специалистов владеют двумя и более видами контроля. Наши специалисты, используя сразу несколько методов неразрушающего контроля, могут оперативно и в полной мере оценить техническое состояние объекта. Это позволяет сократить до минимума необходимое количество работников, занятых при диагностировании, и охватить больший объем вьшолняемых работ, тем самым обеспечивается снижение себестоимости диагностических работ, при сохраняющемся высоком уровне достоверности результатов.  [c.45]

В настоящее время для обнаружения и идентификации дефектов используется широкий спектр методов неразрушающего контроля (НК). Современная классификация методов НК включает девять видов контроля электрический, магнитный, вихретоковый, радиоволновой, тепловой, визу-ально-измерительный, радиационный, акустический и проникающими веществами. По причинам конструктивного и эксплуатационного характера при диагностировании сварных аппаратов используются, в основном, следующие методы НК магнитный контроль (ГОСТ 24450), капиллярный контроль (ГОСТ 24522), акустический контроль (ультразвуковая дефектоскопия ГОСТ 14782 и толщинометрия, метод акустической эмиссии), радиационные методы (ГОСТ 7512 рентгеновский, гамма- и бета-излучением). При этом следует отметить, что радиационные методы применяются преимущественно на стадии изготовления аппаратов, а использование магнитного метода носит эпизодический харак гер. Руководящие документы по оценке 1екущего состояния  [c.175]

Эффективность контроля качества во многом определяется квалификацией персонала и технической оснащенностью лабораторий неразрушающих методов контроля. В России и промышленно развитых европейских странах действует трехуровневая система квалификации /38/. При этом работники специализируются на конкретных методах неразрушающего контроля радиационном, акустическом, магнитном, вихретоковом и капиллярном, по которым в результате проверки теоретических зн 1ний и професси-  [c.220]

В нашей стране разработаны основные принципы построения агрегатной системы приборов неразрушающего контроля (АСНК), предназначенных для дефектоскопии широкой номенклатуры исходных материалов магнитным, ультразвуковым, вихретоковым, рентгеновским, радиотехническим и другими методами. В подшипниковой, трубной и других отраслях промышленности уже внедряются высокопроизводительные комплексы приборов для неразрушающего контроля. В большинстве случаев предусматривается использование ЭВМ для обработки дефектоскопической информации с целью ее использования в системах управления качеством.  [c.222]

По приемам регистрации магнитных полей и их неоднородностей магнитные методы контроля подразделяют на магнитопорошковый, магнитографический, магни-тоферрозондовый, индукционный, вихретоковый и др.  [c.354]

Электромагнитные методы основаны на взаимодействии электромагнитного поля с металлическими объектами различной формы. Сигнал преобразователя связан с параметрами объекта сложными функциональными зависимостями и является функцией таких характеристик системы преобразователь—объект контроля, как расстояние меледу преобразователем и объектом, электрическая проводимость, магиитиая проницаемость, нарушение сплошности материала объекта, скорость взаимного перемещения объекта и преобразователя, форма объекта. В зависимости от частотного диапазона используемых полей выделяют магнитный, вихретоковый и радио-волиовый методы. При магнитном методе применяется постоянное или низкочастотное (до 200—300 Гц) магнитное поле. Диапазон частот вихретокового метода 2-10 —5-10 Гц. В радиоволновом применяют электромагнитные волны сантиметрового или миллиметрового диапазона (как правило, 3 и 8 мм).  [c.70]


Принцип действия вихретоковых да 1Чиков основ н иа анализе взаимодействия с металлическим объектом перемсткло элекгро-магнитного поля. Сигнал преобразователя одновременно связан со многими параметрами системы преобразователь—обгускт контроля, что обусловливает широкую область применения вихретоковых методов.  [c.71]


Смотреть страницы где упоминается термин Магнитные и вихретоковые методы контроля : [c.59]    [c.284]    [c.105]    [c.474]    [c.337]    [c.23]   
Смотреть главы в:

Сварка и резка металлов  -> Магнитные и вихретоковые методы контроля



ПОИСК



Вихретоковый вид контроля

Контроль магнитный и вихретоковый

Магнитный контроль

Метод вихретоковый

Метод магнитный

Методы контроля



© 2025 Mash-xxl.info Реклама на сайте