Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платина-ванадий

Легирующие элементы образуют с железом твердые растворы и химические соединения. Твердые растворы замещения неограниченной растворимости непосредственно после затвердевания образуют с железом никель и кобальт и металлы группы платины, а с а-железом -только хром и ванадий. Характерная диаграмма для систем Fe - Сг показана на рис. 21.  [c.45]

ЯТП (0,650 мкм) ванадия ЯТП (0,653 мкм) ванадия >1< ТЗ платины ТП циркония ТЗ родня ЯТП (0,650 мкм) рутения  [c.176]


Бериллий Be Ванадий V Вольфрам W Молибден Мо Платина Pt Хром f  [c.176]

Ванадий. Платина. Тнтан. . Железо. Никель. Медь. . Серебро. Алюминий Магний. Цинк. . Кадмий.  [c.26]

Радиационное распухание не является характерной особенностью металлов с определенным типом кристаллической решетки. Поры, вызванные облучением, наблюдаются в ГЦК-(алюминий [67, 104], медь [67, 104], никель [67, 104], платина [105]), ОЦК-(ванадий [67, 106], молибден [3, 62, 67], вольфрам [67, 104 ], ниобий [67, 77, 104], тантал [104, 107], железо [63, 108 ) и ГПУ-(магний [67, 104], рений [63], цирконий [109]) металлах.  [c.143]

Золото, серебро, платина, олово, никель, кобальт Тантал, ниобий, титан, торий, церий, ванадий, уран  [c.369]

Вольфрам хорошо растворим в алюминии, титане, ванадии, цирконии, платине, осмии, родии и рутении, но почти не растворяется в ртути. Имеют-сй сообщения о соединениях вольфрама с бериллием и теллуром. Вольфрам слабо растворим в тории и уране. Он не образует сплавов с кальцием, медью, магнием, марганцем, свинцом, цинком, серебром и оловом.  [c.152]

При постоянном простом напряженном состоянии время до разрушения зависит от напряжения и температуры. Существуют различные соотношения, связывающие эти три параметра. В процессе экспериментов установлено, что для многих материалов при фиксированной температуре в достаточно широком диапазоне напряжений время до разрушения и действующее напряжение в полулогарифмических координатах (а, Ig связаны линейной зависимостью. Последнее иллюстрируется рис. 39—42, на которых представлены экспериментальные данные по долговечности. На рис. 39 приведены данные по долговечности поликристаллических металлов (/ — ниобий, 2 — ванадий, 3 — алюминий, 4 — цинк, 5 — платина, 6 — серебро).- Платина испытывалась при 300° С, а остальные металлы — при 20° С. Результаты испытаний на длительную прочность монокристаллов даны на рис. 40 I —- алюминий (при 300° С), 2 — цинк (при 35° С), 3 — цинк (при 20° С), 4 — каменная соль (при 18° С), 5 — алюминий (при 18° С). Рис. 41 характеризует сплавы I — молибден с рением (при 18° С), 2 — алюминий с 0,7% меди (при 70° С), 3 серебро с 2,5% алюминия (при 300° С), 4 — алюминий с4% меди (при 100° С). На рис. 42 приведены данные по полимерным материалам при 20° С I — органическое стекло, 2 — полистирол, 3 — полихлорвинил (волокно), 4 — вискозное волокно, 5 — капроновое волокно, 6 — полипропиленовое волокно.  [c.110]

Приведенные три типа кристаллических решеток свойственны большинству металлов. Объемноцентрированная кубическая ре шетка, например, у а- и р-железа, лития, ванадия, вольфрама молибдена, хрома, тантала гранецентрированная кубическая — у алюминия, 7-железа, золота, меди, никеля, платины, свинца серебра гексагональная плотноупакованная — у магния, цинка бериллия, кадмия, а-титана.  [c.11]


Пытались также проводить подобные опыты, добавляя к железу, помимо углерода, различные вещества магний, кремний, бериллий, никель, кобальт, алюминий, медь, платину, теллур, ванадий, молибден, титан, бор, марганец, окись урана и т. д. Повлиять на расположение кристаллов в железе пытались, помещая охлаждаемую литейную форму в сильное магнитное поле.  [c.240]

Из ряда работ следует вывод о снижении стойкости алюминия, содержащего церий, платину, серебро, торий и ванадий. Присутствие хрома, олова, кадмия и молибдена в зависимости от их содержания и природы коррозионной среды может быть как благоприятным, так и отрицательным. Висмут в одних случаях приводит к повышению стойкости, в других — ои, как и бор, нейтрален. Сурьма в общем обладает защитным действием.  [c.509]

Титановые сплавы. На заводах отечественного машиностроения освоена ковка, штамповка и прессование деформируемых титановых сплавов, состоящих из титана и его сплава с алюминием, железом, хромом, молибденом, ванадием и другими элементами. Эти сплавы отличаются ценными физико-механическими свойствами и высокой коррозионной стойкостью. Титановые сплавы применяются для изготовления поковок и штамповок ответственных деталей современных двигателей и механизмов, работающих с высокими нагрузками в агрессивных условиях и средах при высоких и очень низких температурах, доходящих до минус 200° С. Титан представляет собой металл плотностью 4,5 г/см , он тяжелее алюминия, но легче железа. Титан и его сплав отличаются высокой удельной прочностью при нагревании его до 500° С и коррозионной стойкостью, не уступающей нержавеющей стали и платине, поэтому очень широко применяются при изготовлении сложных и весьма ответственных медицинских установок и хирургического инструмента.  [c.139]

Имеется ряд общих закономерностей, характерных для осаждения кобальта с вольфрамом, ванадием, марганцем, фосфором, а также с молибденом и платиной [7.121.  [c.341]

Се Г1 Церий 1г 1 Иридий 1/1лш Р1 Платина V Ванадий  [c.972]

Основным легирующим элементом в титановых сплавах является алюминий. За редким исключением, он присутствует во всех сплавах на основе титана. Поэтому значение системы Т1 —А1 для титановых сплавов можно сравнить со значением системы Ее —С для сталей. Следующими по важности и распространенности легирующими элементами являются ванадий и молибден, образующие с 0-фэзой титана непрерывный ряд твердых растворов. Применяют легирование промышленных сплавов Сг, Мп, Ее, Си, 8п, 2г, W. Для повышения стойкости титана в сильных коррозионных средах применяют "катодное" легирование в виде небольших добавок палладия и платины. Из неметаллов наиболее важное значение имеет ограниченное легирование кремнием, кислородом, углеродом, бором.  [c.11]

По данным работы [70, электролитическое выявление карбидов проводят следующим образом. Анодом служит образец, катодом — платина. Травление начинают в 10%-ном растворе NaOH. При плотности тока 0,1 А/см длительность травления составляет 2 мин. При этом травятся карбиды хрома, вольфрама, ванадия. После переполировки образец электролитически травят в 10%-ном растворе Na N при плотности тока 0,2 А/см и длительности 2 мин. При этом травятся только карбиды вольфрама и хрома, карбид ванадия остается без изменений.  [c.136]

Цирконий, платина и гафний стойки в натрии до температуры 600—700° С, тантал в очищенном от кислорода натрии стоек до температуры 1000° С. Скорость коррозионного процесса бериллия становится значительной, если в натрии содержится 0,01% кислорода. Сурьма, висмут, кадмий, золото, иллий и чугун в натрии нестойки. На уран натрий воздействует только при наличии в последнем кислорода. При этом скорость реакции пропорциональна концентрации кислорода и при температуре 600° С для очищенного от кислорода натрия составляет 30—100 мк1мес. Торий и ванадий стойки в натрии до температуры 590° С. Скорость коррозии этих металлов 0,2 мг/см мес. Ниобий и вольфрам стойки в очищенном от кислорода натрии до температуры 900° С. Для кратковременной работы при температуре 1500° С пригоден молибден. Сварные соединения титана, циркония, ниобия, тантала, молибдена, никеля, выполненные аргонодуговой сваркой, стойки до температуры 800° С.  [c.49]


При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

В практике имели место попытки защитить сплавы от коррозии в контакте с золой, содержащей пятиокись ванадия, путем нанесения защитных покрытий. Исследовались различные гальванические, диффузионные, керамические и металлокерамические покрытия. Гальванические никелевые и хромовые покрытия разрушались быстро. Через несплошности в них проникает жидкая фаза золы, вызывающая окисление под защитной пленкой. Попытки защитить сплав покрытиями из благородных металлов также не дали положительных результатов, так как даже платина не обладает достаточной стойкостью в контакте с пятиокисью ванадия. Более стойкими оказались диффузионные защитные покрытия, получаемые путем силицирова-ния, однако силицированный слой очень хрупок. До настоящего времени не удалось найти покрытие, которое обеспечило бы надежную защиту от коррозии в контакте с пятиокисью ванадия.  [c.67]

Берилий твердый н жидкий. ... Ванадий твердый Ванадий жидкий Вольфрам твердый при 1650 С. . Железо твердое. Железо жидкое. Золото твердое. Золото жидкое. Ирилий твердый. Иттрий твердый жидкий. ... Марганец твердый жидкий. ... Медь твердая. . Me ib жидкая. . Молибден твердый Молибден жидкий Никель твердый. Никель жидкий. Ниобий тве дмй. Ниобий жидкий. Палладий твердый Палладий жидкий Платина твердая при 98 °С. ...  [c.307]

Особое распространение в современной технике получили металлы середин больших периодов системы Д. И. Менделеева титан, цирконий, ванадий, ниобий, тантал, хром, молибден, вольфрам, рений, не говоря уже о металлах VIII группы железе, кобальте и никеле, значение в технике которых непрерывно возрастает. Сейчас используются и платиновые металлы иридий, родий, палладий и платина (Ки и Оз пока еще применяются мало).  [c.10]

Из жидко металлических теплоносителей наибольшей агреосивно стью против конструкционных материалов обладает галлий. Железо, углеродистая сталь, нержавеющая сталь (.при температурах более 200°С), алюминий, медь, титан, никель, марганец, магний, кадмий, олово, ванадий, цирконий, платина, индий, германий, серебро, золото не могут быть применимы в галлиевых нагревательных установках. В качестве кокструкцион-  [c.109]

Размерная нестабильность сплавов урана определяется и их составом [163]. Кальцийтермическ1 й уран и магнийтер-мический уран имеют различные коэффициенты роста. Уран, содержащий алюминий, железо, ванадий, германий, палладий или титан, испытывает при термоциклировании большое формоизмеиеиие, а добавки молибдена, ниобия, платины и хрома уменьшают абсолютную 1 еличину коэффициента роста. Влияние химического состава на формоизменение сплавов урана при термоциклировании проявляется не только в связи с изменением объемного эффекта и уровня физико-механических свойств при переходе от одного типа упаковки к другому, но и с атомным механизмом этого перехода, характером размещения образующихся фаз и др.  [c.52]

При изготовлении дисперсно-упрочненных материалов типа спеченных алюминиевых порошков (САП) путем спекания совместимость алюминия с дисперсным порошком окиси алюминия в определенной степени определяется когерентностью решетки металла и его окиси, однако при таком способе получения жаропрочных материалов существует большая свобода выбора разнообразных упрочняющих фаз для самых различных материалов. Например, дисперсная двуокись тория в равной мере успешно используется для упрочнения меди, кобальта, никеля и их сплавов, циркония, платины, хрома, молибдена, вольфрама и других металлов. Малые добавки дисперсных окислов А 2О3, YgOg, MgO, BeO, ZrO , НЮ и других очень эффективно упрочняют медь, никель и его сплавы титан, цирконий, ниобий, ванадий, хром, уран и другие металлы.  [c.120]

Для снижения термоэмиссии сеток и повышения из лучательной способности деталей в таких приборах по лучили применение покрытия платиной или комбина цией ее с другими материалами (с карбидом вольфрама или с бором и цирконием), черное хромирование, покрытие трехвалентной окисью ванадия и др.  [c.147]

Фактически это было подтверждено Порте с сотрудниками [699], исследовавшими влияние добавок двадцати элементов в количестве от 1 до 4% (ат.) на поглощение цирконием кислорода при 700° С и /7(3 = 200 мм рт. ст. При условиях эксперимента бериллий, гафний, хром, вольфрам, кобальт, никель, железо, платина и медь почти не оказывали влияния на кубическую скорость окисления циркония. Ванадий и тантал значительно увеличивали количество поглощенного кислорода. Добавки же многих элементов понижали сопротивление циркония окислению. К тому же присадка этих элементов к цирконию приводила к тому, что весьма быстро (через несколько минут или часов) наетупа.л  [c.300]

На поведение материала под нагрузкой, его прочность, способность деформироваться существенное влияние оказывает температура. В однофазных металлах это влияние связано с изменением прочности границ зерен и прочности их тела. При этом существенную роль играет тип кристаллической решетки. Так, если в металлах с объемноцентрированной решеткой (железо, молибден, хром, ванадий, вольфрам) при низких температурах предел текучести заметно изменяется, то у металлов с гранецентрированной кубической решеткой (медь, алюминий, серебро, никель, свинец, золото, платина) это изменение почти отсутствует 1346]. Влияние температуры на свойства металлов с гексагональной решеткой (цинк, кадмий, магний, титан, цирконий, беррил-лий) не имеет общих закономерностей [527 ]. У некоторых однофазных металлов с изменением температуры наблюдается выделение дисперсных частиц вновь образовавшейся фазы, что иногда увеличивает склонность к хрупкому разрушению (старение, некоторые виды тепловой хрупкости).  [c.165]


В состав подглазурных красок вводят такие керамические красители, которые являются стойкими к действию глазури при обжиге. К ним относятся силикаты и алюминаты (шпинели) кобальта, никеля, железа, окись хрома, соединения титана, ванадия и коллоидные золото, платина, иридий. Кроме того, применяют такие бесцветные соединения, которые изменяют оттенок краски. Таковы, например, окиси цинка и олова, сурьмяная кислота, мел и др. Окиси металлов дают под глазурью различные тона в зави-мости от состава глазури. На окраску оказывают влияние не только плавкость глазури, но и те вещества, которые прибавляют к ней в качестве флюса.  [c.532]

Решетку с объемноцентрированными кубическими ячейками имеют а- и б-железо, литий, ванадий, вольфрам, молибден, хром, тантал. Кубическая решетка, имеюшая атомы, расположенные в вершинах и в центрах граней куба, называется кубической гранецентрированной. Такую решетку имеют алюминий, 7-железо, золото, медь, никель, платина, серебро.  [c.357]

Уменьшение плотности тока, увеличение pH и температуры способствует увеличению процентного содержания соосаждаю-щихся с кобальтом компонентов и увеличению коэрцитивной силы остаточная намагниченность при этом снижается. С увеличением толщины пленок от 0,1 до 10 мкм содержание вольфрама, ванадия, марганца, а также молибдена и платины уменьшается падают и величины Не и р, остаточная намагниченность увеличивается. Содержание фосфора, а также магнитные свойства сплава Со— —Р практически не зависят от толщины покрытий.  [c.341]

Соосаждение вольфрама, марганца и ванадия, а также молибдена, фосфора и платины с кобальтом происходит в результате образования в прикатодном слое геля основных соединений соосаж-дающихся металлов и последующего его электрохимического восстановления с образованием сплава.  [c.341]

К магнитно-твердым материалам относятся а) сплавы, закаливаемые на мартенсит (стали, легированные хромом, вольфрамом или кобальтом) б) железо-никель-алюминйевые сплавы дисперсионного твердения в) ковкие сплавы иа основе железа, кобальта и,ванадия (виккалой), железа, никеля, меди й др. г) сплавы с очень большой коэрцитивной силой на основе благородных металлов (платина — железо серебро — марганец — алюминий и др.) д) металлокерамические материалы, получаемые прессованием порошкообразных компонентов с последующим обжигом отпрессованных изделий (магнитов) е) магнитно-твердые ферриты ж) металлопластические материалы, получаемые из прессовочных порошков, состоящих из частиц магнитно-твердого материала и связующего вещества (синтетическая смола).  [c.296]

Платина Никель Ванадий Ванадий Кобальт, никель Цинк, серебро Олово 10MTiSi8  [c.58]


Смотреть страницы где упоминается термин Платина-ванадий : [c.72]    [c.347]    [c.267]    [c.204]    [c.396]    [c.504]    [c.432]    [c.432]    [c.106]    [c.447]    [c.204]    [c.45]    [c.311]    [c.188]    [c.227]    [c.10]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Платина-ванадий



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Платина

Платинит



© 2025 Mash-xxl.info Реклама на сайте