Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамические процессы в двухфазных системах

ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ В ДВУХФАЗНЫХ СИСТЕМАХ  [c.20]

Для широкого круга задач фазовых переходов, тепло- и массообмена в двухфазных системах применяется так называемая квазиравновесная схема, являющаяся основой для формулировки специальных условий совместности. Эта схема основана на гипотезе о том, что характеристики соприкасающихся фаз по обе стороны границы взаимосвязаны условиями термодинамического равновесия. Схема является приближенной, так как все процессы переноса теплоты, импульса и фазовых переходов конечной интенсивности принципиально неравновесны. Однако при весьма низкой интенсивности процессов переноса квазиравновесная схема может рассматриваться как первое приближение. Содержание этой схемы приводится ниже для конкретных условий на границе раздела фаз.  [c.268]


Кинетика фазовых переходов, так же как и кинетика любых иных явлений, выходит за рамки собственно квази-стационарной термодинамики. В вопросах изменения агрегатных состояний термодинамика ограничивается рассмотрением равновесных систем, которые включают в себя уже сформировавшуюся новую фазу. Сам же ход формирования как микро-, так и макроскопических частиц вновь образующейся фазы, их роста и накопления остается за пределами анализа. В границах термодинамических представлений, как указывает Я- И. Френкель [Л. 50], под температурой агрегатного перехода (при заданном давлении) понимается не та температура, при которой фактически начинаются фазовые превращения, а та, при которой микроструктурные изменения, приводящие к возникновению новой фазы, прекращаются и система приходит в стабильное состояние. Очевидно, что и в стабильной системе изменение количественного соотношения между газообразной и конденсированной фазами возможно лишь при некотором нарушении взаимного равновесия элементов системы. Квазистационарная термодинамика допускает такие отклонения, однако каждое из них должно быть исчезающе мало. Это означает, что изменения макроскопического масштаба могут происходить лишь на протяжении бесконечно больших отрезков времени, во всяком случае по сравнению со временем восстановления нарушенного равновесия. В действительности же, как это отмечалось ранее, в быстротекущих процессах (например, при движении в условиях больших продольных градиентов давления) скорость изменения состояний среды, вызываемая внешними воздействиями, оказывается вполне сопоставимой со скоростью развития внутренних процессов, ведущих к восстановлению равновесия системы. Следует отметить, что особенно значительные нарушения равновесного состояния происходят в период зарождения новой фазы и начала ее развития. Мы здесь рассмотрим некоторые элементы процесса формирования конденсированной фазы, во-первых, ввиду его большого практического значения, во-вторых, для того, чтобы несколько осветить физическую картину явлений, приводящих в конечном счете к термодинамически устойчивому двухфазному состоянию.  [c.121]

Рассмотрим процесс конденсации в адиабатически расширяющемся веществе с чисто термодинамической точки зрения, т. е. полагая, что в каждый момент времени имеется термодинамическое равновесие. До момента насыщения пар расширялся, следуя адиабате Пуассона. После достижения состояния насыщения и начала конденсации вещество представляет собой уже двухфазную систему пар — жидкость, и уравнение адиабаты усложняется как вследствие превращения части газовой фазы в жидкую с иными термодинамическими свойствами, так и за счет выделения скрытой теплоты. Уравнение адиабаты двухфазной системы можно записать в следующем виде  [c.456]


При движении же с высокими скоростями (перепады давлений значительны) на развитии процесса сказываются изменения вдоль потока характерных термодинамических величин температуры системы и удельного объема, во всяком случае, паровой фазы. Теплота испарения в этих условиях зависит от закона изменения состояния протекающей среды и отличается от теплоты агрегатного перехода в изобарном процессе. Кроме того, обмен массой между фазами системы зависит не только от направления теплового потока обогрев движущейся двухфазной среды может сопровождаться как повышением степени сухости, так и ее увлажнением. Некоторые стороны поведения смеси жидкости и пара, движущейся с высокими скоростями и подверженной внешним тепловым воздействиям, составляют содержание этой главы. Мы ограничимся рассмотрением лишь тех особенностей течения парожидкостной среды, которые обусловлены ее термодинамическими свойствами.  [c.191]

В настоящее время для щирокого круга задач фазовых переходов, тепло- и массообмена в двухфазных системах применяется так называемая квазиравновесная схема, являющаяся основой для формулировки специальных условий совместности. Содержание квази-равновесной схемы основано на гипотезе о том, что характеристики соприкасающихся фаз взаимосвязаны условиями термодинамического равновесия. Эта схема является некоторым приближением, так как процессы фазовых переходов, тепло- и массообмена, для которых она применяется, являются, безусловно, неравновесными. Название <<квазправ1ювесная отражает приближенный характер этой модели.  [c.57]

Напомним, что формулы (7-31) и (7-32), описывающ,ие соотношение давлений в процессе с нулевым временем релаксации, действительны лишь в двухфазной области. Поэтому в тех случаях, когда скачок уплотнения переводит набегающ,ий поток влажного пара в перегретое состояние, приходится и при термодинамически равновесном переходе привлекать к определению параметров потока зависимости вида (7-40) и (7-29 ), относя их, однако, не к одной только газообразной фазе, а ко всей системе в целом.  [c.247]

Мы изложили общепринятые взгляды на явления упорядочения и разупорядочения. Последняя американская работа о сверхструктурном превращении в равноатомном oPt-сплаве [27] установила, однако, что в этой системе процесс упорядочения действительно является фазовым превращением первого рода и на диаграмме равновесия имеются двухфазные области, в которых упорядоченная и неупорядоченная фазы различного состава находятся в равновесии. Теперь кажется вероятным, что многие, если не все, сверхструктурные превращения могут быть термодинамически фазовыми превращениями первого рода.  [c.46]

В исследованиях фазовых переходов в ударных волнах всегда важен вопрос о равновесности измеряемых состояний и процессов. Очевидно, что локальное термодинамическое равновесие может достигаться только в том случае, если время фазового перехода значительно меньше характерной длительности эксперимента, составляющей в данном случае 10 с. В связи с этим. юбопытно отметить, что в экспериментах с ударными волнами можно надеяться реализовать уникальную возможность проникновения в область абсолютной неустойчивости двухфазной системы, где (dp/dV j- > О [56]. В критической точке, где dp/dV)j = О, значение dp/dV)g остается  [c.366]

Рассмотреть термодинамическую систему, в которой осуществляется процесс последовательной кристаллизации бинарного сплава, характеризующейся наличием развитой (дендритной) фазовой границы. Используя интегральный вариационный принцип Дьярмати (2.29), построить систему уравнений переноса энергии, массы и импульса в области двухфазного состояния системы, представляющего собой совокупность растущих кристаллов-дендритов и окружающей жидкости. Считать, что в двухфазной области выполняется гипотеза квазиравповесия. Это означает, что выполняются условия равновесия в пространстве температура-концентрация-давление (Г —с —р) в жидкой части области и на поверхности растущих кристаллов, а в объеме кристаллов диффузионные процессы полностью заторможены.  [c.101]


При расчетах неравновесных течений приходится проводить численное интегрирование дифференциальных уравнений, описывающих исследуемый неравновесный релаксационный процесс. Кинетические и релаксационные уравнения, описывающие этот процесс, вблизи равновесия являются, как правило, уравнениями с малым параметром при старщей производной, что существенно усложняет их численное интегрирование. К числу релаксационных относятся уравнения сохранения массы химической компоненты (1.15) для определения колебательной энергии (1.16) для определения скоростей и температур частиц в двухфазных потоках (1.18) для определения массы конденсата в течениях с конденсацией. Неравновесные течения в ряде случаев начинаются из состояния, где система близка к термодинамическому равновесию. В тех же областях, где система близка к равновесию и время релаксации, а следовательно, и длина релаксационной зоны малы, возникают значительные трудности с выбором шага интегрирования. Оказывается, что при использовании для численного интегрирования явных разностных схем типа метода Эйлера, Рунге — Кутта шаг интегрирования для проведения устойчивого счета должен быть настолько мал, что расчет становится практически невозможен даже при использовании современных вычислительных мащин.  [c.104]


Смотреть страницы где упоминается термин Термодинамические процессы в двухфазных системах : [c.118]    [c.397]    [c.33]    [c.245]    [c.273]    [c.11]    [c.61]    [c.324]    [c.412]   
Смотреть главы в:

Газодинамика двухфазных сред  -> Термодинамические процессы в двухфазных системах



ПОИСК



Двухфазная система

Процессы термодинамические

Термодинамическая система

Термодинамическая система и процессы в ней



© 2025 Mash-xxl.info Реклама на сайте