Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип работы теплового насоса

Принцип работы теплового насоса  [c.451]

Для этой цели используются парокомпрессионные и абсорбционные холодильные установки. Рассмотрим вкратце принцип их работы, а также принцип работы теплового насоса, который может применяться для охлаждения и отопления здания.  [c.22]

Принцип работы теплового насоса............145  [c.434]

Коэффициент I называют обычно или отопительным коэффициентом, или коэффициентом теплоиспользования, или коэффициентом преобразования теплового насоса. Работа теплового насоса в принципе не отличается от работы холодильной установки. Тепловой насос для нужд отопления применяют в тех случаях, когда имеется источник теплоты с низкой температурой (например, вода в раз-  [c.340]


Для получения остаточного давления в рабочей камере установок для тепловой микроскопии 10 —10 мм рт. ст. и ниже, как правило, применяют пароструйные диффузионные насосы. Принцип работы пароструйных насосов основан на использовании откачивающего действия струи пара, находящейся в насосе жидкости. Молекулы газа, попадающие в струю пара со стороны откачивающего патрубка, в результате диффузии увлекаются струей пара и перемещаются в сторону выбрасывающего патрубка, соединенного с форвакуумным насосом. В качестве рабочей жидкости, заливаемой внутрь корпуса пароструйного насоса и нагреваемой до температуры кипения, применяют специальные вакуумные масла, обладающие низким давлением паров (порядка 10 мм рт. ст.), сложные эфиры или ртуть.  [c.44]

Напомним принцип действия теплового насоса (о нем уже шла речь в гл. 3). Независимо от типа и конструкции это устройство выполняет, как правило, одну функцию— отбирает теплоту Qo. от окружающей среды при ее температуре То.с и отдает теплоту при более высокой температуре Гг в отапливаемое помещение или для подогрева в каком-либо техническом устройстве. Такой процесс перехода теплоты сам по себе происходить не может — это запрещено вторым законом термодинамики. Поэтому для обеспечения работы тепловых насосов необходима определенная затрата эксергии. Чаще всего для привода теплового насоса используется электроэнергия.  [c.161]

Для отопления зданий может быть использована холодильная установка, в которой нижним источником теплоты служит окружающая среда. Этот принцип положен в основу работы теплового насоса. В результате его работы теплота передается источнику теплоты с более высокой температурой, чем окружающая среда.  [c.168]

II. Теплота ql при температуре Гг подводится к тепловому двигателю ГД, который производит работу I и отдает холодному источнику (отапливаемому помещению) теплоту q 2 при температуре Гд. Работа Т используется для привода теплового насоса ТН, отбирающего теплоту 2,0 от окружающей среды с температурой Го и передающего отапливаемому помещению теплоту q ,o при температуре Гп. Е принципе ТН аналогичен холодильной мащине и работает по обратному циклу, потребляя работу (подробнее см. гл. 9). Любопытно, что этот вариант отопительной системы был предложен еще Кельвином ( динамическое отопление ).  [c.94]


Р. Клаузиус обобщил эту закономерность на любые необратимые энергетические процессы, введя принцип возрастания энтропии во всех реальных процессах преобразования энергии в изолированных системах суммарная энтропия всех участвующих в них тел возрастает. Это возрастание энтропии при прочих равных условиях тем больше, чем сильнее процесс (или процессы) в рассматриваемой системе отличается от идеальных, обратимых. В тепловом двигателе, например, как мы видели, ухудшение его действия (т. е. уменьшение получаемой из того же количества теплоты Qi работы L при тех же граничных температурах Ti и Гг) обязательно сопровождается увеличением энтропии, В тепловом насосе увеличение необходимых затрат работы приводит к тому же результату—росту энтропии. Следовательно, энтропия может выполнять еще одну должность — быть характеристикой необратимости процессов, показывать отклонение их от идеальных. Чем больше рост энтропии, тем это отклонение больше.  [c.131]

Повышая давление в газовом тракте, можно добиться практически сколь угодно глубокого охлаждения уходящих газов. Такой процесс связан, однако, с затратой определенной работы и аналогичен процессу теплового насоса, более подробно рассмотренному в следующей главе. Здесь мы покажем только, как принцип  [c.150]

Известен принцип работы энергетических установок, заключающийся в том, что в жидкий теплоноситель вводят поток низкокипящего вещества, нагревают до образования паровой фазы, смесь разгоняют, расширяют в турбине, после чего отделяют низкокипящее вещество, конденсируют его и возвращают в цикл. При этом в жидкий теплоноситель вводят жидкое вещество, температура кипения которого ниже, чем у теплоносителя (например, бутан). В результате смешения происходит нагрев и испарение низкокипящего вещества. Для обеспечения возможности смешения теплоноситель сжимают насосом до давления низкокипящего вещества, значение которого определяется из условий максимальной эффективности цикла. Необходимость повышения давления горячего теплоносителя с помощью насоса затрудняет условия эксплуатации и усложняет тепловую схему установки, снижает ее эффективность. Повышение давления теплоносителя можно обеспечить путем создания в нем скачка уплотнения. Для этого в жидкий теплоноситель вводят поток низкокипящего вещества, нагревают до образования паровой фазы, смесь разгоняют и расширяют в турбине, после чего отделяют низкокипящее вещество, поток его конденсируют и возвращают в цикл, после нагрева паровую фазу низкокипящего вещества выделяют и вводят в теплоноситель для разгона смеси.  [c.107]

С учетом того, что для замораживания вода должна быть охлаждена, получим расход холода на 1 кг опресненной воды около 100 ккал. Но для выработки такого количества холода требуется расход энергии в обычной холодильной установке не более 0,02- 0,04 квт-ч, или 20—40 квт-ч на 1 т опресненной воды. Верхняя цифра относится к районам с высокой температурой охлаждающей воды (до 28—30° С). Однако такой же расход энергии достижим и в дистилляционных опреснительных установках, работающих по принципу теплового насоса (компрессорных). Кроме того, в судовых условиях в большинстве случаев для работы дистилляционных опреснителей удается использовать низкопотенциальное тепло системы охлаждения двигателей или утилизировать тепло вторичного пара, так что расход топлива на работу опреснительной установки не превышает 0,5- 0,8% расхода топлива на главный двигатель. В этих условиях попытки дальнейшего увеличения экономичности опреснительной установки, связанные с неизбежным ее усложнением, совершенно не оправданы.  [c.12]

В настоящей книге мы намеренно предпочли термин двигатель Стирлинга термину машина, работающая по циклу Стирлинга . Это сделано по двум основным причинам. Во-первых, ни один двигатель цли машина в действительности не работают по циклу Стирлинга, хотя при определенных изменениях в конструкции полостей переменного объема можно достичь протекания процессов сжатия и расширения в соответствии с идеальным циклом. Такие модификации имеют общее название изотермические двигатели [2]. С большей точностью, вероятно, можно было бы применить термин машина, работающая по принципу Стирлинга . Во-вторых, машина, работающая по принципу Стирлинга , может функционировать в различных режимах, а именно в качестве механического привода, как тепловой насос [3], холо,а,ильная машина [4] и газогенератор [1]. Все эти режимы можно получить на одном и том же двигателе, чему авторы этой книги были свидетелями при посещении исследовательских лабораторий фирмы Филипс в Эйндховене (Нидерланды). Следовательно, термин машина, работающая по принципу Стирлинга охватывает весь диапазон соответствующих механизмов. Поскольку данная книга посвящена исключительно вопросам получения механической энергии на валу, термин двигатель Стирлинга представляется более подходящим.  [c.13]


Тепловой насос работает по ранее описанному принципу — поглощает теплоту от источника 14 при окружающей температуре и отводит ее через теплообменник 16 в систему обогрева объекта 17 при более высокой температуре.  [c.361]

Работа главных циркуляционных насосов (производительностью до 19 ООО м /ч для ВВЭР-1000) вертикального типа основана на центробежном принципе, они имеют сложную систему уплотнений вала и охлаждения подшипников. Главные циркуляционные трубопроводы с внутренним диаметром от 500 до 850 мм имеют сложную пространственную трассировку, обеспечивающую снижение усилий термокомпенсации при тепловом расшире-  [c.17]

Работа элеваторной схемы непосредственно присоединенных местных систем отопления к тепловым сетям основана на принципе смешения части обратной (охлажденной) воды с перегретой водой при помощи насосов или водоструйного элеватора. Эти устройства, кроме того, обеспечивают циркуляцию воды в системе отопления.  [c.213]

Вновь выпускаемые машины и оборудование в текущем / семилетии должны иметь более высокие технико-экономические показатели экономичность и надежность конструкции, высокую производительность, технологичность конструкции, безопасность в работе и др. Так, у новых тепловых двигателей должны уменьшиться вес и расход топлива, а также повыситься надежность их работы. Машины, применяемые для различных целей в народном хозяйстве, отличаются значительным многообразием конструкций. Естественно, что описать принцип их действия, даже кратко, в небольшом учебнике нельзя. Однако есть типы машин, которые получили наибольшее распространение или имеют важное значение для промышленности, сельского хозяйства, транспорта, знание которых необходимо учителю. К таким машинам следует отнести тепловые машины и гидроустановки, ветродвигатели, насосы, компрессоры. Изучение работы последних и составляет основное содержание курса Машиноведение .  [c.6]

Расчет элементов смазочной системы проектируемого станка — насосов, фильтров, распределителей, маслосборников, трубопроводов и пр. — должен быть в принципе основан на том условии, чтобы количество масла, подаваемого к трущимся поверхностям станка, было достаточно для сохранения температур, безопасных для этих поверхностей во время непрерывной работы станка при полном использовании его по мощности и скоростям. Тепло, образующееся в механизмах станка от трения в передачах, в опорах шпинделей и валов, на направляющих ИТ. д., а также от разбрызгивания и перемешивания масла вращающимися в нем деталями, передается воздуху, окружающему станок, различными путями через циркулирующее в смазочной системе масло, через металлические части механизмов и далее — стенки корпусных деталей. Условием установившегося теплового состояния будет равенство количеств тепла, образующегося во время работы станка в силу указанных выше причин, с одной стороны, и отводимого в окружающий воздух — с другой.  [c.712]

Наиболее слабым звеном в системе тепловой аккумулятор — двигатель Стирлинга с жидким теплозапасающим материалом является циркуляционный насос. Пока нет достаточно надежных насосов для перекачки жидкого металла при температуре 900— 1000° С. Поэтому несомненный интерес вызывает применение в системах с жидким теплозапасающим материалом тепловых труб. Отсылая читателя для ознакомления с конструкцией и принципом работы тепловых труб к специальной литературе [30], отметим те специфические особенности, которые делают их пригодными для применения в системе тепловой аккумулятор — двигатель Стирлинга.  [c.138]

Тепловые насосы широко используются для теплоснабжения в различных технологических процессах и для отопления. Одинаковый принцип работы холодильных машин и тепловых насосов позволяет в одном агрегате вырабатывать как холод, так и теплоту, обеспечивая одновременно тепло- и хладоснаб-жение потребителя. Обычно такое сочетание является экономически выгодным. Источником теплоты для теплового насоса, используемого для отопления, могут быть воздух, вода и грунт. Приемником теплоты является отапливаемое помещение. Если температура источника теплоты изменяется (например, суточное изменение температуры Та воздуха), то эффективность теплового насоса (Q/Ni) также изменяется (рис. 8.27).  [c.324]

Тепловой насос. Нередко бывает так, что температурный потенциал теплоты, выделяемый в ходе одного процесса, слушком низок для того, чтобы он мог быть использован в другом процессе. Для повышения этой температуры можно применить тепловой насос. Он работает по тому же принципу, что и холодильный агрегат в испарителе образуется холод, а в конденсаторе — тепло. Большинство тепловых насосов снабжено электродвигателем, приводящим в действие компрессорн ю систему. На 1 кВт-ч электроэнергии, потребляемой компрессором, приходятся, как правило, 2-—3 кВт-ч выработанной теплоты, причем температурный -потенциал ее выше, чем у источника. Тепловые насосы выгоднее всего применять в тех случаях, когда одновременно существует необходимость в охлаждении и  [c.192]

Автор подобно другим инверсионщикам думает, что тепловой насос может сделать то, чего он на самом деле не может — совершить чудо. Получив работу от тепловой машины, он должен выдать ей на верхнем температурном уровне столько теплоты, чтобы ее не только хватило на производство этой работы, но был бы и некоторый избыток. За счет этого избытка и будет произведена дополнительная работа, отдаваемая внешнему потребителю. Однако мы знаем, что насос такую задачу в принципе решить не может.  [c.205]

Наиболее экономичная работа опреснителя достигается при использовании его вторичного пара после сжатия в качестве греющего в той же ступени, т. е. при организации его работы по принципу теплового насоса. Такие опреснители (рис. 4) получили название компрессорных. В лучших установках этого типа на 1 т топлива удается получить 120—130 т дистиллята. Эти опреснители нашли преимущественное применение на подводных лодках, где к экономичности потребителей электроэнергии предъявляются весьма жесткие требования. Для обычных транспортных судов могут быть применены более простые установки или вакуумные опреснители, утилизирующие тепло воды, охлаждающей главные или вспомогательные двигатели. Такие опреснители называют утилизационными. Схема утилизационного вакуумного опреснителя аналогична показанной на рис. 5. Через трубки нагревательной батареи прокачивается пресная охлаждаюп ая вода с температурой на  [c.20]


Роберт Стирлинг начал совершенствовать свой двигатель, работающий на подогретом воздухе, примерно в то же время, когда войска Наполеона и Веллингтона встретились в битве при Ватерлоо, за 6 лет до публикации знаменитой статьи Карно о термодинамике и за 42 года до рождения Рудольфа Дизеля. К 1908 г. двигатель Стирлинга был уже настолько усовершенствован, что по обе стороны Атлантического океана широко использовались регенератор и принцип двойного действия в нем. Обсуждение возможных областей применения и перспектив этого двигателя регулярно проводилось в известных журналах, таких, как Труды института инженеров-механиков (Великобритания). С середины XIX в. и до начала первой мировой войны воздушно-тепловые двигатели как с разомкнутым, так и с замкнутым циклом имели значительный коммерческий успех, удовлетворяя технические потребности человечества в чрезвычайно широком диапазоне — от энергетических установок на судах до приводов швейных машин, ирригационных насосов и агрегатов для подачи воздуха в церковные органы. Эта последняя область применения была, пожалуй, первым случаем, когда основанием для применения двигателя была бесшумность его работы. Удивительно, что до сих пор существует довольно много таких двигателей, и они находятся в хорошем рабочем состоянии. Области применения некоторых из них кажутся почти неправдоподобными. Совсем недавно один из авторов этой книги, обсуждая с поставщиком вопрос о материалах для двигателя, неожиданно узнал, что у того имеются два двигателя Стирлинга, изготовленные в прошлом веке, один из которых ранее использовался в качестве источника энергии для вращения контейнеров с молоком при изготовлении творога на молокозаводе, а с помощью другого в парикмахерской вращались щетки для укладки волос Однако, хотя двигатель Стирлинга в отличие от паровой машины был вполне безопасным.  [c.185]


Смотреть страницы где упоминается термин Принцип работы теплового насоса : [c.184]    [c.159]    [c.154]    [c.475]    [c.155]    [c.651]    [c.27]   
Смотреть главы в:

Техническая термодинамика Изд.3  -> Принцип работы теплового насоса

Основы теории тепловых процессов и машин Часть 2 Издание 3  -> Принцип работы теплового насоса



ПОИСК



5.431 — Принцип работ

Насосы тепловые

Работа насосов



© 2025 Mash-xxl.info Реклама на сайте