Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Виброизоляция машин оптимальная

Рассмотрим на примере транспортной вибрации [351, как затраты на конструктивно реализованные в настоящее время различные средства снижения вибрации на рабочих местах транспортных машин могут быть описаны универсальной функцией затрат X. На основании найденной функции X будет определена экономически целесообразная эффективность средств виброизоляции в случае транспортной вибрации. Ввиду принципиальной сходимости конструктивных решений, используемых при изоляции локальной вибрации, найденная функция затрат с соответствующей коррекцией будет использована для оценки оптимальной эффективности средств виброизоляции от локальной вибрации.  [c.88]


Таким образом, анализ риск — польза показал, что дальнейшее совершенствование средств изоляции от общей вибрации дает только оздоровительный эффект, так как величины виброускорений на рабочих местах транспортных машин таковы, что они создают риск заболевания вибрационной болезнью меньше оптимального. В случае локальной вибрации разработка средств виброизоляции с повышенной эффективностью приводит к экономическому эффекту, так как почти весь ручной инструмент создает повышенный риск заболевания вибрационной болезнью, который по величине превышает оптимальный риск.  [c.92]

Задачи виброизоляции не исчерпываются ослаблением передачи вибраций от работающей машины в опорные конструкции и окружающую среду. К проблемам виброизоляции относятся уменьшение передачи вибраций к объекту от вибрирующих опорных конструкций, а также успокоение прецизионных станков и чувствительных приборов, эффективность работы которых зависит от уровней их вибраций. Последней проблеме посвящена обширная литература [68, 171, 189, 190, 205, 327]. Большое внимание в этих книгах, а также многочисленных статьях уделяется расчету оптимальных параметров амортизаторов, минимизирующих вибрации изолируемого объекта.  [c.233]

Изложенная выше методика оптимизации параметров обладает тем недостатком, что она не всегда может использоваться в процессе проектирования для подбора параметров виброизоляции для упругих объектов, так как необходимые для этого обобщенные динамические характеристики в точках крепления виброизолирующих элементов не определяются расчетным путем, теоретически. Их можно получить только экспериментально, когда уже построены объект и фундамент. Изложенная выше методика должна быть использована в дальнейшем для уточнения оптимальных параметров виброзащитной системы в процессе доводки объекта. В настоящий момент даже для существенно упругих объектов известны по паспорту машины только виброперегрузки или амплитуда колебаний в некоторых точках на периферии объекта, причем эти точки могут быть расположены даже не в местах крепления виброизолирующих узлов.  [c.380]

Критерии оптимальности, совместно использующие функционалы от детерминированных и случайных вибрационных воздействий. Для многих важных приложений, например для задач оптимального синтеза одномерных систем виброизоляции приборов, установленных на подвижных объектах, оптимального синтеза подвески самоходных машин, виброизоляций сидений и кабин операторов, функционалы Ар и Лгг, определяются при стационарном случайном вибрационном воздействии, а В — при детерминированном воздействии, называемом для кинематической виброизоляции программным движением [119]. Для подвесок транспортных машин в качестве таких воздействий выбирают отдельные неровности — ямы и бугры , при максимально возможной величине которых должно обеспечиться отсутствие пробоя подвески.  [c.289]


Автоматизация проектирования систем виброизоляции. Поиск конструктивных путей проектирования реальных систем виброизоляции приводит к проблеме их машинного проектирования. При использовании ЭВМ представляется возможным формулировать и решать задачу выбора оптимальных решений в общем виде, учитывая все ограничения на фазовые координаты и оптимизируемые параметры.  [c.314]

Диалоговые системы автоматизированного проектирования виброзащитных систем. Пакеты прикладных программ оптимизации не всегда обеспечивают эффективное решение задачи выбора оптимальной структуры и параметров системы виброизоляции, требуя иногда значительных затрат машинного времени. Наиболее эффективными являются диалоговые человеко-машинные системы автоматизированного проектирования, включающие банки моделей, банки данных, пакеты программ оптимизации и средства диалога и направленного имитационного моделирования. Такие системы позволяют получать приемлемую точность решения за сравнительно небольшое число итераций в результате удачного управления параметрами модели и алгоритмов в процессе вычислений.  [c.315]

Подобные задачи на оптимум возникают и при виброизоляции машин. В частности, в одной из простейших постановок она может быть сформулирована так пусть амортизатор имеет комплексную жесткость С((о) = Со(со) [1 4-iil( )], модуль которой и коэффициент потерь является функциями частоты при заданных характеристиках возбуждения машины и при неизменном весе и общей жесткости амортизатора определить оптимальные зависимости Со (со) и т)((о), приводящие к наибольшей эффективности амортизации. Эта и подобные ей задачи могут быть решены различными способами (см. 6 данной главы), однако возможности реализации оптимальных функций Со(со) и т]( ) с помощью пассивных элементов весьма ограничены. Поэтому практическая реализация оптимальных виброзащитных устройств требует привлечения методов управления параметрами амортизаторов. Более подробно этот вопрос будет обсуждаться в следующем параграфе при рассмотрепии методо(В активной виброизоляции машин.  [c.233]

Основные положения. Применение аналитических безмашинных методов расчета к проектированию сложных систем виброизоляцни реальных машин, функционирующих в условиях действия случайных возмущений, в частности к проектированию оптимальных нелинейных систем вибронзоляции наземных машин, не дало удовлетворительных результатов в связи с большими трудностями вычисления. Поэтому практически невозможно реализовать многие известные методы аналитического конструирования линейных систем виброизоляции машин, не говоря уже о нелинейных системах или об условиях неполной информации. Методы численной оптимизации могут быть сформулированы и развиты для широкого класса задач проектирования сложных систем виброизоляции с учетом реальных условий их функционирования и проектирования.  [c.306]

При анализе колебаний станков используется аппарат случайных функций [60] правда, случайными считаются в основном лишь возмущения, а упругие системы станков опйсываются детерминированными уравнениями, поскольку определение коэффициентов этих уравнений опирается на детерминированные же методы, принятые в расчетах деталей машин. Наибольшее применение аппарат случайных функций получил при расчете виброизоляции машин [68]. В этом случае достаточно просто можно получйть экспериментальные статистические характеристики кинематических возмущений, создаваемых фундаментом, не искажен- ные еще упругой системо,й рассчитываемой машины, в частности системой станКа. Зная характеристики упругой системы станка, его реакцию на случайный сигнал определяют известными способами [63]. Перспективным является применение к динамическому расчету станков теории оптимальных процессов, которая уже используется при решении некоторых задач машиноведения [61 ].  [c.10]

Оптимальная виброизоляция. В заключение параграфа коснемся вопроса об оптимизации параметров амортизации машин. Выше было показано, что эффективность виброизоляции амортизатора при заданных жесткости и весе существенно завпсит от его устройства. Одну из задач по оптимизации можно, следовательно, сформулировать следующим образом найти такое распределение заданных массы и жесткости внутри амортизатора, которое приводит к максимальной эффективности виброизоляции в заданном диапазоне частот. Один из вариантов решения этой задачи приведен в книге [81], где показано, что оптимальные значения жесткостей i и Са в амортизаторе с заданной промежуточной массой Ма (см. рис. 7.15, а) удовлетворяют соотношению +/м = +/ф.  [c.233]


Постановка задачи акустической оптимизации. Типичными задачами акустической оптимизации машин и механизмов являют-с,и следующие выбор параметров механической системы таким образом, чтобы ее резонансные частоты были максимально удалены от частотного диапазона, содержащего рабочие частоты машины максимальное повышение низшей собственной частоты системы снижение до минимулма уровней колебаний в опорных точках оптимальное нанесение антивибрационного покрытия получение наибольшей виброизоляции в заданном диапазоне частот для решетчатой проставки минимизация амплитуд вынужденных колебаний оптимальное размещение группы машин и механизмов на общей раме и т. д. [137- 196, 207, 292, 297, 345,  [c.257]

Практическая ценность изложенной инженерной методики подбора параметров блока виброизоляции по максимальному кинематическому возбуждению состоит в том, что она позволяет еще в процессе проектирования агрегатов, когда их динамические свойства неизвестны, произвести предварительную оценку оптимальных параметров двухкаскадного амортизатора-антивибратора и оценить прочность его упругих элементов, т. е. позволяет с чего-то начать конструктивную разработку блоков инерционной виброзащиты для сложных упругих вибрирующих объектов. Можно думать, что практически именно эта методика найдет широкое применение, так как во многих случаях коррекция будет невелика или просто материально затруднена из-за необходимости постановки довольно емких экспериментов на объектах, которые уже построены. Особенно важной эта методика может явиться при конструировании стандартизированных автономных виброза-щитных инерционных блоков, изготовляемых вне зависимости от частных видов упругих машин и упругих фундаментов подобно тому, как сейчас изготовляются простые амортизаторы, эти блоки должны быть настраиваемыми , т. е. процесс проектирования виброзащитной системы следует разбить на два этапа предварительный процесс проектирования виброзащитной системы и окончательный.  [c.383]

Задачу синтеза оптимальных структур систем виброизоляции можно в принципе преобразовать и сформулировать как расширенную задачу параметрической оптимизации. В этом случае в математической модели системы вибронзоляции оптимизируемые параметры и ограничения будут переменными для различных структур. К структурной оптимизации систем виброизоляции наземных машин можно отнести, например, выбор числа опор и вида связи (механическая, гидравлическая или пневматическая) между подвесками опор. Оптимизацией степени связи между подвесками можно выбрать наилучшую структуру. В задаче оптимизации параметров систем виброизоляции задаются структура системы и статистические характеристики входных возмущений. Требуется определить значения параметров, при которых достигается экстремум принятого критерия эффективности. В наиболее часто встречающихся на практике задачах оптимизации структуру систем вибронзоляции выбирают исходя из функционального назначения системы и имеющихся реальных элементов. Кроме того, расширением пространства варьируемых параметров можно получить эффект вариации структуры системы. Если имеется ряд конкурирующих структур, производится параметрическая оптимизация каждой из них л после сравнения отбирается наиболее рациональная.  [c.307]


Смотреть страницы где упоминается термин Виброизоляция машин оптимальная : [c.434]    [c.423]   
Введение в акустическую динамику машин (1979) -- [ c.233 ]



ПОИСК



Виброизоляция

Виброизоляция машин

Оптимальная виброизоляция



© 2025 Mash-xxl.info Реклама на сайте