Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Развитие методов алгебраического приближения

Развитие методов алгебраического приближения  [c.219]

Рассмотренные выше задачи о ламинарных установившихся течениях решались точными или приближенными аналитическими методами. Путем надлежащего использования граничных условий Б этих задачах удавалось упростить уравнения движения и привести их к интегрируемому виду. Существует немало других задач, решения которых получены тем же путем и находят важные технические приложения. Однако современное развитие инженерной практики требует решения и более сложных задач, в которых приходится учитывать все члены уравнений Навье—Стокса, что не позволяет их решить в квадратурах. Широкие возможности открывает использование ЭВМ и применение численных методов решения. Последние основаны на замене (аппроксимации) дифференциальных уравнений уравнениями в конечных разностях, которые решаются на ЭВМ как система алгебраических уравнений. Разработаны и успешно применены к различным гидродинамическим задачам несколько численных методов, причем в некоторых из них используются не только эйлеровы, но и лагранжевы переменные.  [c.318]


Первый, так называемый классический подход в методах алгебраического приближения характеризуется тем, что алгебраической аппрокснмании подвергается непосредственно исходное интегральное уравнение радиационного теплообмена, составленное для любого вида плотностей излучения. Для определения средних по дискретным участкам излучающей системы плотностей излучения подобная аппроксимация, по-видимому, впервые была применена О. Е. Власовым [Л, 100] при решении частной задачи переноса излучения в каналах с адиабатическими стенками. В дальнейшем эта идея была развита и обобщена для произвольного числа серых диффузных поверхностей, разделенных диатермической средой, и для систем с поглощающей средой в работах Г. Л. Поляка [Л. 19, 93, 130].  [c.220]

Если учитывать конечную проводимость элементов решетки с помощью граничных условий Леонтовича, то, как и в случае идеально проводящих элементов, методы, развитые в [235, 25], позволяют свести задачу к решению бесконечной системы линейных алгебраических уравнений, свойства которой обеспечивают экспоненциально малую погрешность метода редукции, а для редкой решетки — сходимость метода последовательных приближений. Последний в длинноволновой области позволяет получить (е — относительная диэлектрическая проницаемость элементов решетки)  [c.65]

Широкое применение цифровых электронных вычислительных машин сделало целесообразным применение к задачам обтекания метода интегральных уравнений. В последние годы получают развитие численные методы построения течеций идеальной несжимаемой жидкости с помош,ью распределенных особенностей (вихрей, источников-стоков, диполей). Одним из преимущ еств этих методов по сравнению с методами комплексного переменного является возможность их применения для построения не только плоских, но и пространственных течений. Эти методы опираются на хорошо разработанную в математике обш,ую теорию потенциала. В 1932 г. П. А. Вальтер и М. А. Лаврентьев, пользуясь указанной обш,ей теорией, получили интегральное уравнение относительно интенсивности распределения вихрей вдоль криволинейного контура и предложили метод последовательных приближений для его решения. В статье М. А. Лаврентьева, Я. И. Секерж-Зеньковича и В. М. Шепелева (1935) указанный способ применяется к построению обтекания бипланной системы, состояш,ей из двух бесконечно тонких искривленных дужек. Задача сводится к решению системы двух интегральных уравнений методом последовательных приближений и доказывается сходимость такого процесса. В последние годы развивались численные методы расчета произвольных систем тонких профилей. С. М. Белоцерковский (1965) использовал схему замены вихревого слоя (как стационарного, так и нестационарного) конечным числом дискретных вихрей, сведя задачу к решению системы алгебраических уравнений. В работах А. И. Смирнова (1951) и Г. А. Павловца (1966) используется схема непрерывного распределения вихрей и с помощью интерполяционных полиномов Мультхопа расчет также сводится к решению системы алгебраических уравнений.  [c.88]


Теорию крыла конечного размаха позволило создать использование основополагающей теоремы Н. Е. Жуковского о связи подъемной силы с циркуляцией и модели течения с присоединенным вихрем, так что эта теория является логическим продолжением и развитием идей, составляющих фундамент теории крыла бесконечного размаха, В 1910 г. С. А. Чаплыгин в докладе на тему Результаты теоретических исследований о, движении аэропланов сформулировал общие представления о вихревой системе крыла конечного размаха. В 1913 и 1914 гг. им были получены первые формулы для подъемной силы и индуктивного сопротивления. Они были доложены на третьем воздухоплавательном съезде в Петербурге. В дальнейшем основное распространение получила теория несущей линии, предложенная в Германии Л. Прандтлем для крыльев большого относительного удлинения. В рамках этой схемь было получено интегро-дифференциальное уравнение, связывающее изменение циркуляции и индуктивный скос потока. Задача свелась к отысканию различных приближенных методов его решения. В работе Б. Н. Юрьева (1926) был применен геометрический прием, в котором использовалось предположение о том, что распределение циркуляции близко к эллиптическому и что отклонения от этого распределения повторяют форму крыла в плане. Аналитические методы, применявшиеся на начальном этапе развития теории для получения приближенных решений, состояли в требовании удовлетворения основному уравнению в ограниченном числе точек по размаху. Так, в методе тригонометрических разложений В. В. Голубев (1931) заменил бесконечный тригонометрический ряд тригонометрическим многочленом, сведя бесконечную систему уравнений к конечной системе, в которой число неизвестных соответствует числу членов разложения циркуляции и числу точек на крыле. С целью более точного учета формы крыла в плане при ограниченном числе решаемых алгебраических уравнений Я. М. Серебрийский (1937) предложил для решения интегро-дифференциального уравнения использовать способ наименьших квадратов.  [c.92]

При использовании МКЭ расчетная область разбивается на конечное число подобластей, называемых конечными элементами. Для двухмерных задач наиболее часто в качестве конечных элементов используются треугольники и четырехугольники, для трехмерных — тетраэдры и параллелепипеды. В пределах каждого конечного элемента вводятся аппроксимирующие однотипные функции, которые равны нулю всюду, кроме как в соответствующем элементе и непосредственно примыкающих к нему подобластях. Для нахождения значений функций в узлах прилегающих друг к другу элементов составляется система алгебраических уравнений либо методом Ритца, основанным на минимизации функционала, выбираемого в соответствии с физическим смыслом задачи, либо методом Галеркина, в котором минимизируются ошибки решения задачи с помощью приближенной модели. Матрица коэффициентов системы линейных алгебраических уравнений является сильно разреженной матрицей ленточной структуры, в которой ненулевые элементы располагаются параллельно главной диагонали. Ширина ленты зависит от способа нумерации узлов. Рациональная нумерация позволяет добиться минимальной ширины ленты и повысить эффективность решения системы уравнений. МКЭ стимулировал развитие специальных методов решения систем с сильно разреженными матрицами [79, 80].  [c.97]


Смотреть страницы где упоминается термин Развитие методов алгебраического приближения : [c.517]    [c.305]   
Смотреть главы в:

Основы радиационного и сложного теплообмена  -> Развитие методов алгебраического приближения



ПОИСК



I алгебраическая

Методы алгебраического приближения



© 2025 Mash-xxl.info Реклама на сайте