Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы прохождения и комбинированные методы

МЕТОДЫ ПРОХОЖДЕНИЯ И КОМБИНИРОВАННЫЕ МЕТОДЫ  [c.112]

При контроле тонких изделий методом прохождения или комбинированными методами сквозной или донный сигнал осциллирует в результате интерференции прямого сигнала и сигнала, дважды отраженного в изделии и играющего вследствие этого роль ложного сигнала. Эти сигналы не будут интерферировать, если длительность импульса т меньше времени пробега ультразвука в объекте контроля в прямом и обратном направлениях т < 2Я с. При выполнении этого условия импульсы, прошедшие непосредственно через объект и многократно отраженные в нем, приходят к приемнику в разные интервалы времени и не интерферируют между собой. Чтобы исключить интерференцию в промежуточных слоях, для них также необходимо выполнение подобных условий. Длительность импульса обычно сокращают повышением частоты колебаний.  [c.284]


Активные акустические методы, в которых применяют бегущие волны, делят на подгруппы, использующие прохождение, отражение волн и комбинированные методы, в которых применяют отражение и прохождение. Методы прохождения предполагают наличие двух преобразователей — излучающего и приемного, расположенных по разные стороны объекта контроля или контролируемого участка. Применяют как импульсное, так и, реже, непрерывное излучение. К этой подгруппе относят следующие методы дефектоскопии (ГОСТ 18353—79)  [c.94]

Активные методы делят на методы прохождения, отражения, комбинированные (использующие как прохождение, так и отражение), импедансные и методы собственных частот.  [c.209]

В комбинированных методах используют принципы как прохождения, так и отражения акустических волн.  [c.97]

Рис. 23. Комбинированные методы, использующие прохождение и отражение Рис. 23. <a href="/info/177795">Комбинированные методы</a>, использующие прохождение и отражение
Крупнейшим достижением явилась разработка в 1949—1951 гг, в Институте электросварки им, Е. О. Патона высокоэффективной электрошлаковой сварки. При электрошлаковой сварке, в отличие от автоматической под флюсом, электрическая энергия превращается в тепловую не при помощи электрической дуги, а при прохождении ее через расплавленный шлак (отсюда и название способа). Сущность способа состоит в том, что расплавленный шлак, будучи нагрет до очень высокой температуры, оплавляет кромки свариваемых изделий и расплавляет присадочный электродный материал. Это крупнейшее достижение советской сварочной техники, получившее мировую известность, подняло технику сварки на новую, более высокую ступень и внесло громадные изменения в конструкцию, технологию и организацию производства массивных крупногабаритных изделий, решив весьма важный для дальнейшего развития техники вопрос качественной и высокопроизводительной сварки металла практически неограниченной толщины и механизации сварки вертикальных швов. Электрошлаковая сварка стала ведущим методом при изготовлении барабанов паровых котлов и сосудов высокого давления, прокатного оборудования, мощных прессов, валов крупных гидротурбин и гидрогенераторов, доменных комплексов и т. д. Она позволила эффективно заменить литые и кованые изделия сварными, что резко сократило трудоемкость и цикл изготовления конструкций, способствовало экономии металла, снижению стоимости изделий, позволило отказаться от строительства ряда крупных кузнечно-прессовых и литейных цехов и дало огромную экономию в народном хозяйстве. С широким применением электрошлаковой сварки в 50-х годах началось эффективное производство крупногабаритных комбинированных сварных конструкций в тяжелом машиностроении.  [c.125]


Электрохимическая обработка (рис. 15 б) основана на явлении анодного растворения, заключающемся в том, что при прохождении тока через электролит (например, водный раствор хлористого натрия) электрод, подключенный к положительному полюсу (аноду), растворяется. При этом частички металла заготовки I в виде ионов поступают в зазор между электродами и выносятся проточным электролитом из зоны обработки. Благодаря тому, что участки заготовки, которые находятся ближе к поверхности инструмента 2, быстрее растворяются, профиль этого инструмента копируется на обрабатываемую деталь. Электрохимический метод также применяют для активизации шлифования абразивным или алмазным инструментом (комбинированная электроабразивная и электроалмазная обработка).  [c.54]

Сущность радиационного метода нагрева заключается в передаче тепла от источника нагрева к нагреваемому изделию через теплоноситель, которым является нагретый воздух. В электронагревателях сопротивления тепло выделяется в нагревательном элементе (нихромовой проволоке, ленте) в момент прохождения по нему электрического тока. Газопламенный способ заключается в подводе тепла, выделяющегося при сгорании, с внешней стороны изделия. Горючими газами являются ацетилен, пропан-бутановая смесь, природный газ в смеси с кислородом или воздухом. При индукционном способе сварное соединение нагревается электрическим током, индуктируемым в металле переменным электромагнитным полем. Индукционный нагрев при местной термической обработке выполняется токами промышленной и повышенной (2500—8000 Гц) частоты. Комбинированный способ нагрева заключается в применении электронагревателей комбинированного действия, когда используются способы сопротивления, и индукционный — токами промышленной частоты. При этом нагрев осуществляется, главным образом, за счет метода сопротивления, индукционная составляющая оказывает меньшее тепловое воздействие. При термохимическом способе нагрева необходимое тепло образуется при сгорании пакетов из экзотермических смесей, устанавливаемых на сварное соединение. Эти смеси, в состав которых входят окислы алюминия, соединения серы и фосфора, при сгорании  [c.207]

В предлагаемой работе кратко изложены теоретические основы распространения упругих волн в твердых телах, причем больше внимания уделяется вопросам распространения поперечных (сдвиговых) колебаний в анизотропных средах. Даны основы метода акустополяризованных измерений. Объяснена физическая суть эффекта линейной анизотропии поглощения (акустического дихроизма). На основе анализа законов отражения на полупространстве и отражения-прохождения на границе раздела сред рассматриваются пути создания эффективных чисто поперечных линейно-поляризованных излучателей и приемников колебаний. Проанализированы, разработаны и испытаны конструкции комбинированных преобразователей для излучения и приема продольных и сдвиговых колебаний, преобразователей для определения упругих постоянных анизотропных сред. На основе результатов сравнительных испытаний показаны их достоинства и недостатки. Описаны акустополярископы трех модификаций и приемы проведения акустополяризационных измерений. Изложены приемы обработки результатов измерений, определения типа симметрии и констант упругости анизотропных сред. Даны правила для расчета констант, анализа сред ромбической, тетрагональной, псевдогексагональной, кубической и изотропной симметрий. Вместе с этим показано, что по числу выявленных элементов симметрии возможен анализ сред более низких форм симметрии, например, тригональной и др.  [c.12]


Смотреть страницы где упоминается термин Методы прохождения и комбинированные методы : [c.173]    [c.8]    [c.269]   
Смотреть главы в:

Методы акустического контроля металлов  -> Методы прохождения и комбинированные методы

Акустические методы контроля Книга 2  -> Методы прохождения и комбинированные методы



ПОИСК



Метод комбинированный

Методы прохождения



© 2025 Mash-xxl.info Реклама на сайте