Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Автомодельные движения газа со сферическими, цилиндрическими и плоскими волнами

Автомодельные движения газа со сферическими, цилиндрическими и плоскими волнами  [c.167]

Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]


Исследованию течений газа с ударными волнами посвящены многочисленные работы, относящиеся главным образом к течениям, зависящим от двух переменных (одномерные неустановившиеся движения, плоские и осесимметричные сверхзвуковые установившиеся течения). Основным средством расчета таких течений при наличии ударных волн умеренной и большой интенсивности является метод характеристик и его упрощенные модификации, связанные часто с трудно контролируемыми допущениями. Поэтому при оценке точности приближенных методов особая роль принадлежит задачам об автомодельных движениях, решение которых в случае двух независимых переменных удается получить с желаемой степенью точности путем интегрирования обыкновенных дифференциальных уравнений. В ряде работ изучены неустановившиеся автомодельные движения, которые возникают при расширении в газе плоского, цилиндрического и сферического поршня с постоянной скоростью [1, 2] и со скоростью, меняющейся со временем по степенному закону, но при нулевом начальном давлении газа [3], течения, образующиеся нри точечном взрыве в среде с нулевым начальным давлением [4, 5], и некоторые другие. При установившемся обтекании сверхзвуковым потоком изучены автомодельные течения, возникающие при обтекании клина и круглого конуса [6, 7.  [c.261]

Задача о поршне, уже рассмотренная в 18 для одномерных движений с плоскими волнами, представляет интерес и для движений с цилиндрической или сферической симметрией. В этих случаях сравнительно простое — автомодельное — решение существует лишь тогда, когда поршень вдвигается в покоящийся газ, расширяясь из точки (начала координат) с постоянной скоростью для других краевых условий задача о поршне неавтомодсльна. Тем не менее исследование решения задачи о порщне полезно для понимания общей методики отыскания таких решений.  [c.205]

Н. Л, Крашенинникова (1955) рассмотрела задачу о расширении в покоящемся газе поршня с радиусом В, зависящим от времени по степенному закону В f + . Решение этой задачи автомодель-но, если пренебречь начальным давлением газа. Крашенинникова провела исследование задачи для нескольких комбинаций тг и V (V = 1, 2, 3 для течений с плоскими, цилиндрическими и сферическими волнами) и установила, что решение с ударной волной, отделяющей покоящийся газ от области возмущенного поршнем движения, существует не для всех комбинаций этих величин. Л. Г. Велеско, Г. Л. Гродзовский и Н, Л. Крашенинникова (1956) провели систематические расчеты автомодельных течений, возникающих при расширении цилиндрического поршня для значений ге от О до —0,35. Этим течениям эквивалентны симметричные течения около тел вращения степенной формы при числе Маха М = оо.  [c.186]



Смотреть страницы где упоминается термин Автомодельные движения газа со сферическими, цилиндрическими и плоскими волнами : [c.587]   
Смотреть главы в:

Методы подобия и размерности в механике  -> Автомодельные движения газа со сферическими, цилиндрическими и плоскими волнами



ПОИСК



Автомодельность

Автомодельность движения

Волна плоская

Волна сферическая

Волны цилиндрические

Движение автомодельное

Движение газа автомодельное

Движение газов

Движение плоское

Движение с плоскими волнами

Движение с цилиндрическими волнами

Движение со сферическими волнами

Движение сферическое

О газе в движении

Сферические и цилиндрические волны

плоские сферические



© 2025 Mash-xxl.info Реклама на сайте