Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Начальный участок турбулентного движения

НАЧАЛЬНЫЙ УЧАСТОК ТУРБУЛЕНТНОГО ДВИЖЕНИЯ  [c.196]

Изучение процессов движения жидкости и теплоотдачи в трубах представляет собой большой практический интерес, так как трубы являются элементами различных теплообменных аппаратов. Наибольшие трудности возникают при исследовании движения и теплоотдачи на начальном участке трубы. Участок в трубе, на протяжении которого поле основной переменной величины (скорости или температуры) зависит от условий на входе и на котором происходит нарастание пограничного слоя до заполнения поперечного сечения трубы, называют начальным участком. В зависимости от природы процесса переноса различают гидродинамический начальный участок и тепловой начальный участок. На начальном участке может быть ламинарное и турбулентное движение жидкости во входном сечении трубы (х = 0) профиль скорости плоский (имеет прямоугольную форму).  [c.293]


Выше мы говорили о турбулентном движении надо учитывать, что аналогичный участок ( начальный участок ) должен иметь место и при ламинарном режиме.  [c.158]

Аналогично начальному участку гидродинамической стабилизации существует начальный участок тепловой стабилизации 1 . Качественный характер деформации эпюры температур на начальном участке тепловой стабилизации показан на рис. 2.39. Коэффициент теплоотдачи на начальных участках трубы уменьшается, так как вследствие увеличения толщины пограничного слоя растет его термическое сопротивление и падает градиент температуры. При турбулентном режиме течения ламинарный пограничный слой разрушается и коэффициент теплоотдачи увеличивается, затем стабилизируется при установившемся турбулентном режиме (рис. 2.40). На участках тепловой стабилизации коэффициент теплоотдачи принимает постоянное значение. Длина участка тепловой стабилизации при постоянной температуре стенки, при постоянных физических параметрах жидкости, при ламинарном режиме движения равна = 0,055 Ре и при турбулентном режиме / т = 50 d.  [c.133]

Как в случае ламинарного, так и в случае турбулентного движения стабилизация потока с характерным для этих режимов распределением скоростей по сечению наступает не сразу при входе потока в трубу. Во входном сечении трубы профиль скорости плоский, а эпюра имеет вид прямоугольника. Под действием сил трения образуется ламинарный пограничный слой, толщина которого растет по мере удаления от входного сечения и затем пограничные слои сливаются. При турбулентном режиме течения, при скоростях, соответствующих Re > 1-10, ламинарный слой разрушается и переходи в турбулентный пограничный слой с ламинарным подслоем. После смыкания пограничных слоев течение приобретает стабилизированный турбулентный характер (рис. 2.38). Начальный участок трубы, на котором устанавливается стаби-  [c.182]

В отличие от переходных явлений, рассмотренных в предыдущем параграфе, в пограничном слое наличие того или другого режима движения обусловлено развитием движения вдоль пограничного слоя. Так, начальный участок слоя обычно бывает ламинарным, за ним располагается переходная область, где одновременно сосуществуют турбулентные зоны потока с ламинарными, и, наконец, область развитого турбулентного потока, состоящая из турбулентного ядра и тонкого, вязкого подслоя граничащего с твердой стенкой.  [c.528]


В отличие от переходных явлений, рассмотренных в предыдущем параграфе, в пограничном слое наличие того или другого режима движения обусловлено развитием движения вдоль пограничного слоя. Так, начальный участок слоя обычно бывает ламинарным, за ним располагается переходная область, где сосуществуют турбулентные зоны потока с ламинарными, и, наконец, область развитого турбулентного потока.  [c.670]

В пограничном слое ламинарное движение занимает небольшой участок длины, начальные возмущения у входной кромки плавательных приспособлений и шероховатая поверхность их оказываются вполне достаточными для создания турбулентного движения воды в пограничном слое.  [c.35]

Дадим прежде всего качественное описание структуры затопленной свободной, т. е. не стесненной стенками, турбулентной струи, вытекающей из плоского или круглого сопла (рис. 9.7). Если сопло надлежащим образом профилировано, то распределение скоростей в его выходном сечении будет равномерным. По мере продвижения струи происходит ее торможение окружающей жидкостью и наряду с этим вовлечение последней в движение. Поэтому на некотором расстоянии 1 поперечное сечение ядра течения с равномерным распределением скоростей уменьшается до нуля, а вокруг него образуется струйный пограничный слой, в котором скорость асимптотически изменяется от значения Ыд до нуля при удалении от оси струи. Участок длиной состоящий из ядра и струйного пограничного слоя, называют начальным участком свободной струи. За сечением х — лежит относительно небольшой переходный участок.  [c.378]

Указанное характерное распределение скоростей по поперечному сечению потока наступает не сразу по входе потока в трубу. Всегда имеется начальный участок, в пределах которого происходит стабилизация движения. На этом так называемом участке f и д р о д и н а-мической стабилизации меняется характер потока (профиля скоростей). Так, например, при ламинарном течении жидкости (Re < 2200) во входном сечении на поверхности трубы образуется динамический пограничный слой, толщина которого увеличивается по мере удаления потока от входного сечения. В дальнейшем ламинарные пограни шые слои смыкаются и течение приобретает ламинарный стабилизированный характер (рис. 27.2, а). При турбулентном течении жидкости (Re >10 ) вблизи входного сеченйя сначала образуется ламинарный пограничный слой, который затем переходит в турбулентный. В дальнейшем происходит смыкание турбулентных пограничных слоев и течение приобретает турбулентный стабилизированный характер (рис. 27.2, б).  [c.337]

Гидродинамический начальный участок наблюдается как при ламинарном, так и при турбулентном течении. Однако при Ке > Кекргтечение в начальном участке может развиваться своеобразно. В передней части трубы может существовать ламинарная форма течения. Образующийся ламинарный пограничный слой при достижении критической толщины переходит в турбулентный. Толщина последнего быстро растет, пока це заполнит все течение трубы. Зона начального участка в месте изменения режима течения характеризуется перемежаемостью движения. Изменение, режима течения может произойти и за пределами начального гидродинамического участка.  [c.201]

Современные теоретические направления изучения теплоотдачи при турбулентном течении продвинулись далеко вперед. Они позволяют решать такие задачи как теплоотдача сжимаемых газов с учетом изменяемости всех физических характеристик с температурой, как теплоотдача жидкометаллических теплоносителей, как охлаждение пористых поверхностей, сквозь которые в газовый поток внедряется та или иная жидкость и т. п. Необходимо подчеркнуть, что соответствующие решения имеют силу только при безотрывных течениях, поскольку вклад области за местом отрыва потока в гидродинамическое сопротивление тела обусловлен не механизмом трения, а пониженным давлением на кормовую поверхность (сопротивление давления). Кроме того, следует иметь в виду, что на практике обычно встречаются смешанные случаи, когда некоторый начальный участок пограничного слоя является ламинарным, и лишь за ним течение турбулизи-руется. В связи с этим возникает вопрос об условиях перехода из одного режима движения в другой. Трудности теоретических исследований возрастают при необходимости учитывать криволи-нейность омываемых поверхностей, т. е. неравномерность распределения давления на стенку. Рассмотрение такого рода вопросов является предметом специальных курсов.  [c.121]


Исследование теплоотдачи по методу конденсации. На рис. 3-19 приведена схема рабочего участка, в котором обогрев опытной трубки производится 1конденсирующим-ся паром [Л. 3]. Рабочий участок представляет собой горизонтально расположенную трубу 1 с внутренним диаметром 10,2 мм и длиной 600 мм. В качестве после-дуемой жидкости применяется дистиллированная вода в условиях турбулентного движения. Вода подается из сборного бака большой емкости насосом через напорный бачок в рабочий участок. По выходе из рабочего участка вода поступает в уравнительный бачок, поддерживающий постоянное противодавление, а из него через измерительный сосуд снова попадает в сборный бак. Обогрев опытного участка трубы (Производится слегка перегретым водяным паром. Греющий пар подается в -кожух 2 с паровой рубашкой 8, (которым окружена опытная труба. iB нижией половине этого кожуха припаяно 11 перегородок 3, образующих 12 отсеков для сбора и отвода конденсата через штуцера 9. Для обеспечения отвода конденсата, образовавшегося на данном участке опытной трубы, в соответствующий отсек применяются специальные направляющие из тонкого листового материала, припаянные к поверхности опытной трубы и соединенные с перегородками. Длина отсеков различна. На начальном участке опытной трубы, где наблюдается значительное изменение коэффициента теплоотдачи, перегородки ставятся чаще. Расстояния между перегородками указаны на рисунке.  [c.172]

При движении твердого тела в газе или жидкости возникают так называемые шумы обтекания. Начальный участок o6i екания может создавать шум типа краевого тона (см. предыдущий параграф), тогда как след, образующийся за обтекаемым телом, который становрпся турбулентным уже при числе Рейнольдса для следа Re 100, генерирует шум квадрупольного происхождения. При обтекании тел может возникать вихревой звук большое значение имеет шероховатость обвода тела.  [c.442]

Теория гиперзвукового турбулентного следа, разработанная Лизом и Хромасом [6], касается главным образом процесса смешения, который определяет скорости диффузии и охлаждения следа за тупым телом при термодинамическом равновесии. В атой теории рассматривается структура следа за тупыми телами и предлагается упрощенная схема течения во внешней и внутренней частях следа. Граница между этими частями следа считается бесконечно тонкой и предполагается, что расширение границы внутреннего следа зависит только от градиента и величины энтальпии. Кроме того, рассматриваются два предельных вида турбулентной диффузии 1) турбулентность, обладающая локальным подобием , при котором поток в каждом сечении ведет себя как участок автомодельного турбулентного следа с малой скоростью, и коэффициент диффузии пропорционален местной потере количества движения или сопротивлению внутреннего следа на данном участке 2) замороженная диффузия, при которой коэффициент турбулентной диффузии зависит только от начального значения коэффициента сопротивления внутреннего следа в области горла. Если коэффициент диффузии известен, то можно проинтегрировать уравнения турбулентной диффузии для энтальпии и массовой концентрации. Были рассчитаны частные случаи нарастания внутреннего турбулентного следа и проведено сравнение с экспериментальными данными. Кроме того, рассчитан типичный  [c.169]


Смотреть страницы где упоминается термин Начальный участок турбулентного движения : [c.42]    [c.42]    [c.190]    [c.283]    [c.340]    [c.77]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Начальный участок турбулентного движения



ПОИСК



Движение турбулентное

Начальные движения

Прямое численное моделирование турбулентного движения в начальном участке осесимметричной струи при наличии низкочастотного гармонического возбуждения

Участок начальный



© 2025 Mash-xxl.info Реклама на сайте