Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения малых колебаний при наличии сил сопротивления

Дифференциальные уравнения малых колебаний при наличии сил сопротивления  [c.257]

Рассматривая задачу о свободных колебаниях материальной точки при отсутствии силы сопротивления, можно довести решение до результата в общем виде и затем подставить в него численные данные. Рещая же задачу о свободных колебаниях материальной точки при наличии силы сопротивления, надо подставить численные данные в составленное дифференциальное уравнение н определить я и к, так как в зависимости от соотношения коэффициентов п ]Л к приходится записывать решение уравнения в тригонометрических либо в гиперболических функциях (случаи малого, большого сопротивлений и предельный случай).  [c.80]


Что же в итоге дала эпоха становления и утверждения классической механики, эпоха от Галилея до Ньютона, в учении о колебаниях и волнах Пользуясь современной нам терминологией, мы можем подытожить труды целого столетия следующим образом. Во-первых, была построена теория малых колебаний (около положения равновесия) системы с одной степенью свободы (маятник) как незатухающих, так и при наличии вязкого сопротивления. Теория была построена в геометрической форме, ее еще предстояло перевести на язык анализа и представить как результат интегрирования дифференциального уравнения. Во-вторых, была дана в основном оправдавшая себя схема распространения волн сжатия и разрежения в идеальной жидкости, выявлена зависимость скорости распространения этих волн от упругости (давления) и плотности среды. В-третьих, была дана (слишком) упрощенная физическая схема образования волн на поверхности тяжелой жидкости. В-четвертых, был найден плодотворный принцип для построения фронта распро-  [c.261]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]



Смотреть страницы где упоминается термин Дифференциальные уравнения малых колебаний при наличии сил сопротивления : [c.69]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Дифференциальные уравнения малых колебаний при наличии сил сопротивления



ПОИСК



Колебания Уравнения колебаний

Колебания малые

Сопротивление колебаниям

Уравнения дифференциальные малых колебаний

Уравнения малых колебаний



© 2025 Mash-xxl.info Реклама на сайте