Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамические процессы реальных газов

Учебник состоит из 2-х частей. В первой части излагаются основные законы термодинамики, термодинамические процессы, реальные газы н пары, даются основные положения химической термодинамики. Во второй части главное внимание уделено явлениям теплообмена в авиационной и ракетной технике, процессам теплоотдачи при больших скоростях газа, вопросам теплообмена в вакууме и, др.  [c.2]


В первой части учебника излагаются основные законы термодинамики, термодинамические процессы, реальные газы и пары, рассматриваются циклы двигателей внутреннего сгорания, газотурбинных установок и реактивных двигателей даются основные положения химической термодинамики, необходимые для построения теории горения.  [c.3]

ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ РЕАЛЬНЫХ ГАЗОВ И ПАРОВ  [c.33]

Термодинамические процессы реальных газов  [c.36]

ИССЛЕДОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ РЕАЛЬНЫХ ГАЗОВ, ПРОЦЕССОВ И ЦИКЛОВ ТЕПЛОВЫХ МАШИН  [c.63]

Рассматриваемые ниже циклы являются идеализацией действительных процессов, протекающих в реальных двигателях. Сущность этой идеализации состоит в том, что действительные процессы заменяют обратимыми термодинамическими процессами идеальных газов, что дает возможность использовать при их анализе необходимые закономерности, полученные выше для идеальных газов.  [c.70]

К. В. Покровский Термодинамика газов, мало отличающихся от идеальных (1946). В диссертации К. В. Покровского проводятся обобщение теоретических и экспериментальных данных главнейших технических газов и разработка отдела технической термодинамики, который автор называет термодинамикой реальных газов, мало отличающихся от идеальных . Диссертация содержит три главы. В гл. 1 автор на основании теоретических и экспериментальных данных обосновывает приводимое им уравнение состояния технических газов и указывает границы его применимости. В гл. 2 автор дает способ вычисления основных термодинамических функций реальных газов и уравнений различных газовых процессов. В гл. 3 рассматривается уравнение состояния для смеси газов.  [c.332]

Теория термодинамических процессов в термодинамике в значительной степени идеализирована за счет введения таких понятий, как понятие обратимости процессов, представления рабочего тела как идеального газа, использования предпосылки о постоянстве численного значения показателя процесса как политропы с постоянным значением. Переход от идеализированных уравнений, получаемых при этих предпосылках, к реальным в этом случае осуществляется за счет введения в расчеты опытных коэффициентов, учитывающих отклонения идеализированных процессов от реальных.  [c.6]

Расчет процессов сжатия реальных газов с необходимой точностью может быть осуществлен двумя основными методами но термодинамическим диаграммам состояния газа, например в А—5 координатах по аналитическим зависимостям, в которых используется уравнение состояния реального газа.  [c.126]


Термодинамические процессы, протекающие в реальном газе. В инженерной практике, за исключением процессов, протекающих в компрессорах, мы встречаемся с четырьмя основными термодинамическими процессами, а именно изобарным, изохорным, изотермическим и адиабатным. Обычно при р реальные газы можно рассматривать как идеальные и для них уравнением состояния является уравнение Менделеева - Клапейрона (1.4). В этом случае связь между основными термодинамическими параметрами и работа расширения-сжатия рассчитываются по формулам, приведенным в предыдущем параграфе. Изменение внутренней энергии, энтальпии и энтропии в термодинамическом процессе рассчитывается по нижеследующим формулам с учетом температурной зависимости теплоемкости  [c.29]

Уравнение состояния реального газа, отражающее все его свойства, как это будет показано ниже (см. 4.9, 4.10) весьма сложно, и непосредственное использование его при исследовании термодинамических процессов связано с большими трудностями. Процесс вычислений значительно облегчают ЭВМ, с помощью которых по сложным уравнениям вычисляют наиболее употребимые параметры состояния с относительно небольшими интервалами их значений. По результатам расчета составляют таблицы термодинамических свойств и строят термодинамические диаграммы, такие, как Гх-диаг-рамма и ей подобные. Таблицы и диаграммы широко используют в анализах и технических расчетах, например, процессов изменения состояния водяного пара (см. 11.6 и гл. XII) и других веществ.  [c.40]

Для изучения и расчетов различных термодинамических процессов, в которых рабочим телом является насыщенный и перегретый пар (в общем случае реальный газ), особо удобна диаграмма is.  [c.168]

Энтальпия зависит только от температуры, поэтому выражение (1.70) справедливо для любого другого термодинамического процесса. Полученное выше уравнение (1.67) удовлетворяется в том случае, если в качестве рабочего тела равновесного процесса принят идеальный газ. При рабочих процессах с реальными рабочими телами уравнение (1.39) с учетом выражения (1.49) может быть представлено в виде  [c.20]

Отсюда видно, что всякий реальный процесс перехода газа из одного состояния в другое неизбежно связан с нарушением термодинамического равновесия, и каждое из промежуточных состояний его является неравновесным.  [c.15]

Рассмотрим термодинамический процесс с позиции первого закона термодинамики. Одна из математических форм записи этого закона термодинамики (8.7) для закрытой системы показывает, что теплота Q подведенная к системе (к объему газа), затрачивается на повышение внутренней энергии рабочего тела этой системы (газа) Ai/и совершение работы L. В общем случае при изучении реальных процессов не известны доли тепла, затраченные на изменение внутренней энергии А i/и совершение работы L. Это крайне затрудняет термодинамический анализ реальных процессов.  [c.97]

В данном разделе будут рассматриваться только вопросы, связанные с термическим КПД, т. е. с проблемами теоретических термодинамических циклов. Поэтому при исследовании циклов реальных машин сделаем ряд допуш ений и упрощений. Будем считать, что в рассматриваемых процессах рабочим телом является идеальный газ с постоянной теплоемкостью термодинамические процессы, происходяш ие в рассматриваемых машинах, замкнуты, т. е. являются циклами процесс сгорания — это процесс подвода теплоты процесс уноса теплоты с продуктами сгорания — это процесс отвода теплоты.  [c.108]

За прошедший период исследования многих новых проблем механики жидкости и газа получили применение при решении задач современной техники. Среди этих проблем заслуживают упоминания динамические и термодинамические процессы в газовых потоках больших скоростей, движение электропроводных жидкостей и газов (плазмы) в электрических и магнитных полях, ламинарный и турбулентный перенос импульса (трение), тепла и вещества (примесей) в потоках ньютоновских и неньютоновских жидкостей и много других физических и химических явлений, сопутствующих движениям реальных жидкостей и газов.  [c.8]


Теплоемкость реальных газов зависит от температуры, давления и характера термодинамического процесса, в котором тепло подводится к газу. Для газа в состоянии, близком к идеальному, зависимость теплоемкости от давления незначительна.  [c.78]

Точный расчет процессов сжатия реальных газов может быть произведен при помощи термодинамических диаграмм или, если желательно получить результаты расчета в аналитической форме, при помощи уравнений состояния реальных газов при условии, что эти последние достаточно точны. Эти же методы могут быть применены и при анализе процессов сжатия перегретых паров.  [c.203]

В книге изложены основные законы термодинамики. Рассмотрены уравнения состояния идеальных и реальных газов. Особое место уделено изложению метода исследования термодинамических процессов, термодинамики газового потока и циклам двигателей внутреннего сгорания.  [c.2]

Ясно, что идеальный газ в действительности не существует. Однако введение модели идеального газа позволило составить простые аналитические зависимости между его параметрами и создать очень стройную теорию термодинамических процессов, протекающих в подобных газах. В то же время свойства многих реальных газов, с которыми приходится иметь дело теплотехникам, при умеренных давлениях и не очень низких температурах, почти не отличаются от свойств идеального газа. Поэтому рассмотрение свойств таких газов, их законов имеет большое практическое значение.  [c.22]

При рассмотрении движения реального газа или жидкости необходимо учитывать диссипацию (рассеяние) энергии, вызываемую трением и теплопроводностью, т. е. термодинамической необратимостью процесса.  [c.313]

В реальных тепловых машинах превращение теплоты в работ связано с целым комплексом сложных физико-химических, газо динамических и термодинамических процессов, учет которых делает изучение циклов достаточно сложным, основанным в большей своей части на результатах эксперимента. Такие циклы тепловых двига телей называют действительным i.  [c.199]

В реальных компрессорах, турбинах и других газовых машинах иногда работа сил трения бывает значительной и ею нельзя пренебрегать. Работа трения сказывается на уравнениях не только в том, что в них сохраняется слагаемое о /тр, но и в том, что теплота трения влияет на характер процесса изменения состояния газа. Как известно из предыдущего ( 5. 10), сложные термодинамические процессы можно с достаточной точностью описать уравнением политропы  [c.138]

Книга состоит из двух частей первая посвящена технической термодинамике, вторая—теплопередаче. В первой части рассматриваются основные понятия, первое и второе начала термодинамики, термодинамические процессы идеальных и реальных газов, циклы двигателей внутреннего сгорания, паротурбинных установок и компрессоров, процессы истечения газов. Во второй части освещены вопросы переноса теплоты теплопроводностью, конвекцией и излучением, метод подобия и основы теплового расчета теплообменников. При изложении материала авторы старались обращать особое внимание на физическую сущность изучаемых явлений, формировать у учащихся научное понимание основ теплотехники и прививать им практические навыки в решении задач прикладного характера. При этом авторы исходили из того, что изучение теоретических основ теплотехники должно предшествовать изучению специальных курсов, посвященных парогенераторам, паротурбинным установкам, автоматизации тепловых процессов, эксплуатации теплоэнергетических установок.  [c.3]

Выбранное стандартное состояние системы или составляющих может оказаться не реализуемым а действительности, гипотетическим состоянием, что, однако, не существенно, если свойства веществ в этом состоянии могут рассчитываться из имеющихся данных (ср. (6.32),. (6.33) и пояснения к ним). О выборе стандартных состояний существуют соглашения, использующиеся обязательно при составлении таблиц термодинамических свойсив индивидуальных веществ и растворов. Для индивидуальных жидких и кристаллических веществ в качестве стандартного состояния принимается их реальное состояние при заданной температуре и давлении 1 атм, для индивидуальных газов — гипотетическое состояние, возникающее при изотермическом расширении газа до бесконечно малого давления и последующем сжатии до 1 атм, но уже по изотерме идеального газа. Стандартным состоянием компонентов раствора выбирается обычно состояние каждого из соответствующих индивидуальных веществ при той же температуре и давлении и в той же фазе, что и раствор (симметричный способ выбора стандартного состояния), либо такое состояние выбирается только для одного из компонентов, растворителя, а для остальных, растворенных веществ, — состояние, которое они имеют в бесконечно разбавленном растворе (асимметричный выбор). В соответствии с этим стандартизируются и термодинамические процессы. Так, стандартная химическая реакция — это реакция, происходящая в условиях, при 1К0Т0рых каждый из реагентов находится в стандартном состоянии. Если, например, реагируют газообразные неш ества, которые можно считать идеальными газами, то в соответствии с (10.17) и уравнением состояния идеально-газовой смеси (3.17) химический потенциал /-ГО вещества в смеси  [c.100]

В природе существукзт, конечно, только реальные газы, однако изучение законов идеального газа представляет практический интерес. Во-первых, в технике часто имеют дело с нагретыми газами при относительно малых давлениях, когда силы взаимодействия между молекулами малы и ими можно пренебречь. В этих случаях идеализация свойств реального газа значительно облегчает термодинамические исследования газовых процессов, позволяя использовать простые математические зависимости для идеального газа. Во-вторых, идеальный газ можно представить как предельное состояние реального при р -> О, Это дает возможность рассматривать ряд величии, характеризующих свойства реаль-  [c.114]


Надежность проектирования различных технических объектов в большой степени связана с точностью расчетов процессов изменения состояния рабочих веществ, которые используются в этих объектах. Качественное проектирование дает существенный экономический эффект за счет снижения затрат топливно-энергетических ресурсов и материалов, а также затрат на создание опытно-промышленных образцов нового оборудования. Различные газообразные рабочие вещества широко используются в народном хозяйстве. В связи с этим создание достаточно точного уравнения состояния реальных газов представляет собой задачу первостепенной важности. Уравнение Ван-дер-Ваальса было опубликовано в 1873 г., теория уравнения обобщала опыт исследований в этой области за предшествующий многолетний период. В последующий период по мере развития техники предпринимались многочисленные попытки усо-веригенствования уравнения Ван-дер-Ваальса, а также построения новых уравнений состояния . В настоящее время наибольшее внимание уделяется созданию так называемых полуэмпирических уравнений состояния. Основой в этом случае является уравнение в вириальной форме (4.2), но вириальные коэффициенты рассматриваются как эмпирические и вычисляются по измеренным термодинамическим свойствам веществ, а не по зависимости Un(x).  [c.105]

Если процесс расширения газа в реальных условиях проводить медленно, то работа при этом процессе будет стремиться к значению работы при равновесном процессе. Как будет показано ниже, найденный теоретически коэффициент полезного действия тепловой машины, совершающей обратимый цикл, будет максимальным. Это теоретическое условие дает возможность сделать все необходимое для того, чтобы при конструировании реальных тепловых двигаталей приблизить их к тепловой машине, совершающей обратимый цикл. Изучение равновесных процессов и процессов, близких к равновесным, составляет основное содержание термодинамического исследования.  [c.53]

Процессы расширения или сжатия газа, сопровождающие его перемещение по каналам, являются термодинамическими процессами. Термодинамическое состояние газа определяется давлением р, плотностью р температурой Т. Для идеального газа эти три параметра связаны между собой, как уже говорилось выше, фавнением состояния р = pRT для идеального газа и р = zpRT для реального газа.  [c.21]

Кроме указанного исследования Вайсмана, посвященного теории потока влажного пара, ряд исследований в этой области был проведен проф. И. И. Новиковым. Из них можно назвать следующие Об одном парадоксе предельных состояний течения газа (1945) Замечания к теории предельных состояний течения газов (1945) О скорости звука в насыигепном и влажном паре (1947) О суп е-ствованпи ударных волн разрежения (Доклады Академии наук СССР, 1948). В 1947 г. Новиков успешно защитил докторскую диссертацию на тему О некоторых термодинамических закономерностях реальных (необратимых) процессов течения газов и паров .  [c.329]

И при М==10 превосходит температуру набегаюьцего потока более чем в двадцать раз (при 7=1,4). Появление области с очень высокой температурой при гиперзвуковом обтекании тел воздухом и другими газами приводит ко второй особенности таких течений (первая выражена неравенством (23.1), а именно — к проявлению эффектов, связанных с поведением реальных газов при высокой температуре. Для учета этих эффектов вместо модели совершенного газа для воздуха или других смесей газов вводятся более сложные модели модели термодинамически равновесного газа с учетом протекания в нем физико-химических процессов — возбуждения внутренних степеней свободы молекул и атомов, диссоциации молекул, химических реакций между компонентами смеси, ионизации атомов и молекул модели, в которых учитывается конечная скорость протекания названных физико-химических процессов (модели термодинамически неравновесного или релаксируюихего газа) модели с учетом процессов молекулярного переноса в газе—вязкости, теплопроводности, диффузии, а также с учетом излучения. В последних моделях нужно принимать во внимание и то, что при высокой температуре обтекающего тела газа поверхностный слой тела может разрушаться, в результате чего поток вблизи тела будет содержать газообразные (а иногда — и испаряющиеся твердые и жидкие) продукты разрушения тела.  [c.400]

Термодинамическая модель диссоциирующего идеального газа может быть применена для описания процесса ассоциации газовых молекул в реальном газе.  [c.192]


Смотреть страницы где упоминается термин Термодинамические процессы реальных газов : [c.19]    [c.61]    [c.53]    [c.42]    [c.147]    [c.22]    [c.84]    [c.306]    [c.336]    [c.734]   
Смотреть главы в:

Теплотехника  -> Термодинамические процессы реальных газов



ПОИСК



ИССЛЕДОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ РЕАЛЬНЫХ ГАЗОВ, ПРОЦЕССОВ И ЦИКЛОВ ТЕПЛОВЫХ МАШИН ИССЛЕДОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ РЕАЛЬНЫХ ГАЗОВ

Процессы термодинамические

Реальные газы

Реальный газ

Реальный процесс

Термодинамические процессы для газов

Термодинамические процессы реальных газов и паров



© 2025 Mash-xxl.info Реклама на сайте