Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна (проволока) карбида кремния

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]


Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.  [c.424]

Для упрочнения алюминия, магния и их сплавов применяют борные (тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют ag= 2500...3500 МПа, =450 ГПа. Нередко в качестве волокон используют проволоку из высокопрочных сталей. Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана. Для никелевых сплавов повышение жаропрочности достигается армированием их вольфрамовой или молибденовой проволокой.  [c.235]

В разделе IV обсуждалось использование низкотемпературных материалов. В настоящее время исследуются экспериментальные композиции, которые обеспечат улучшение эксплуатационных качеств применительно ко всем секциям двигателя. К ним относятся титан, армированный борными волокнами никель, армированный волокнами карбида кремния различные суперсплавы, армированные проволоками из тугоплавких металлических сплавов. Последний тип композиций открывает возможности для замены в будущем существующих сплавов для лопаток турбин более легкими материалами с повышенной выносливостью при температурах свыше 1100° С.  [c.75]

По описанной выше технологии могут быть получены и композиционные материалы с алюминиевой матрицей, армированные волокнами карбида кремния, бериллиевой, стальной и вольфрамовой проволокой.  [c.183]

Горячая вытяжка. Этот метод разработан для производства прутков или трубчатых изделий из полуфабрикатов в форме проволоки [8]. Процесс вытяжки следует проводить таким образом, чтобы растягивающие напряжения были направлены в основном вдоль волокон, а изгибающие напряжения были минимальными или отсутствовали. Это дает возможность существенно уменьшить повреждения волокон и дефекты на границе раздела волокно-металлическая матрица. На рис. 7.4 показана общая схема метода горячей вытяжки стержней из композиционного материала на основе алюминия, армированного углеродными волокнами. Заготовку в виде проволоки вакуумируют в оболочке из нержавеющей стали. Вытяжку осуществляют, протягивая такую заготовку через волочильный глазок из карбида кремния, температура которого поддерживается на постоянном уровне, ниже температуры плавления металлической матрицы.  [c.247]


Для армирования КМ с металлической матрицей используют освоенные промышленностью высокопрочные волокна углерода, бора, карбида кремния и вольфрама, оксидов алюминия и циркония, проволоку из стальных, вольфрамовых и молибденовых сплавов, а также нитевидные кристаллы ("усы").  [c.461]

Волокнистые композиционные материалы. В волокнистых композиционных материалах упрочнителем служат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбида кремния, оксида алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компонентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметаллической основе осуществляется с помощью адгезии. Повышение адгезии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются  [c.263]

Около двадцати дет тому назад в нашей стране начались исследования по получению алюминиевых сплавов, армированных стальной проволокой. В настоящее время для упрочнения алюминия также используют вольфрамовую проволоку или волокна окиси кремния, двуокиси циркония, окиси алюминия, бора, карбида кремния и др.  [c.466]

Борные волокна получают осаждением бора из газовой смеси водорода и треххлористого бора на нагреваемую до температуры 1100—1200 °С вольфрамовую проволоку или углеродные моноволокна. При нагреве иа воздухе волокна бора начинают окисляться при температурах 300—350 С, при 600—800 °С полностью теряют прочность. Активное взаимодействие с большинством металлов А1, Mg, Ti, Fe, Ni) начинается при температурах 400—600 °С. Для повышения термостойкости на волокна бора наносят газофазным способом тонкие слои (2—6 мкм) карбида кремния (Si /B/W), карбида бора (B /B/W), нитрида бора (BN/B/W)  [c.494]

Волокна карбида кремния диаметром 100—200 мкм производят осаждением при 1300 °С из парогазовой смеси четыреххлористого кремния и метана, разбавленной водородом в соотношении 1 2 10, иа вольфрамовую проволоку  [c.494]

Для повыщения прочности соединений рекомендуют выполнять швы композиционными электродами или присадочными проволоками с объемным содержанием армирующей фазы 15—20%. В качестве армирующих фаз применяют короткие волокна бора, сапфира, нитрида или карбида кремния.  [c.503]

Для упрочнения алюминия, магния и их сплавов применяют борные = 2500-=-3500 МПа, Е 380- - 420 ГПа) и углеродные (о 1400 — 3500 МПа, Е — 160—450 ГПа) волокна, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют Ов — 2500- 3500 МПа Е = 450 ГПа. Нередко в качестве волокон используют проволоку из высокопрочных сталей.  [c.299]

Поскольку упрочнение в армированных волокнами системах зависит главным образом от свойств волокон (матрица действует только как среда для передачи напряжения), такие системы по своим высокотемпературным характеристикам должны превосходить системы, упрочненные дисперсными частицами (см. гл. IX). В качестве армирующих используют собственно волокна, усы или проволоку из железа, стали, вольфрама, никеля, молибдена, титана и других металлов, графита, окислов алюминия, бериллия или кремния, карбидов, нитридов, боридов и других тугоплавких материалов.  [c.462]

Никель, армированный волокнами бора, карбида бора, вольфрама, стальной проволокой. По описанной выше технологической схеме с использованием электролита Уотса были получены композиционные материалы на основе никеля, армированные волокнами бора, карбида кремния и вольфрама 1224]. Листовые материалы толщиной до 3,2 мм имели близкую к теоретической плотность и регулярное распределение упрочняющих волокон. Однако практически нет ограничений для изютовления и более толстых листов или пластин.  [c.179]


Композиционные материалы с алюминиевой матрицей армируют волокнами стекла, бериллием, высокопрочной стальной проволокой, карбидом кремния и нитевидными кристаллами различного типа. Композиции с алюминиевыми сплавами, армированными волокнами окиси кремния, изучены Кретли и Бейкером [8]. Композиции изготовляли путем операции высокоскоростного покрытия волокон алюминием из расплава с последующим горячим прессованием покрытых проволок. Композиции содержали приблизительно 50 об. % волокна, при этом достигалась прочность 0,85 ГН/м (91 кгс/мм ). Установлено, что прочность композиционного материала сильно зависит от параметров горячего прессования и, конечно, никакого повышения модуля упругости по сравнению с матрицей не было получено. Но ввиду общего превосходства системы алюминий — бор, а также из-за серьезной проблемы совместимости между волокном и матрицей с этой системой проводились небольшие по объему работы.  [c.45]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

Более тридцати лет тому назад в СССР были начаты исследования по получению алюминиевых сплавов, армированных стальной проволокой. Затем для упрочнения алюминия начали применять вольфрамовую и бериллиевую проволоку, волокна оксида кремния, диоксида циркония, оксида алюминия, бора, карбида кремния, углерода и др. В настоящее время наиболее распространены технологические схемы, предусмат-  [c.184]

Материалы на никелевой основе армируют проволокой тугоплавких металлов и сплавов на основе вольфрама и молибдена, волокнами углерода и Si . Один из способов получения на основе никельхромо-вых сплавов композиций, армированных усами оксида алюминия, включает экструдирование пластифицированной смеси с последующим спеканием. Армированный никель изготовляют с применением электролитического нанесения покрытий на волокна карбида кремния или бора. Есть композиции на никелевой основе, армированные однонаправленными вольфрамовыми проволоками и сетками из них. Пакет, набранный из чередующихся слоев тонкой никелевой фольги и армирующей проволоки, подвергают горячему динамическому прессованию, способствующему приданию получаемому композиционному материалу повышенной механической прочности. Можно применить инфильтрацию каркаса из соответствующего волокна расплавом никеля.  [c.185]

Армирование титана и его сплавов повышает жесткость и расширяет диапазон рабочих температур до 973 - 1073К. Для армирования титановой матрицы применяют металлические проволоки, а также волокна карбидов кремния и бора Композиты на основе титана с металлическими волокнами получают прокаткой, динамическим горячим прессованием и сваркой взрывом.  [c.115]

Неметаллические волокна — борные, углеродные, карбида кремния, оксида алюминия, оксида циркония, нитевидные кристаллы карбида н нитрида кремния, оксида и иитрнда алюминия и др. Металлические армирующие — волокна (проволока) бериллия, вольфрама, молибдена, стали, титановых и других сплавов.  [c.352]

Волокна карбида кремния получают в вертикальных реакторах по аналогичной схеме, как и при получении волокон бора. Сердечником при этом служат вольфрамовая проволока или пековые моноволокна углерода. В последнем случае прочность и термостойкость волокон карбида кремния существенно повышаются из-за более низкого уровня напряжений между оболочкой и сердечником. Температура подложки при осаждении карбида кремния составляет 1100. .. 1200 °С. Соотношение компонентов парогазовой фазы подбирают в зависимости от требуемого диаметра волокна, диаметра нити подлож-  [c.462]

Армированию чаще подвергают жаропрочные никелевые сплавы, чтобы увеличить время их работы и рабочую температуру до 1100—1200 °С. Для армирования никелевых сплавов применяют упрочнители нитевидные кристаллы А1гОз (усы), проволоки тугоплавких металлов и сплавов на основе W и Мо, волокна углерода и карбида кремния.  [c.278]


Хотя в настоящее время наиболее распространенными являются композиты на основе стекловолокон, достаточно широко используются и КВМ на основе асбестовых, углеродных, графитовых и кварцевых волокон. Широкое применение находят армированные пластики на основе арамидных волокон (особенно волокна Кевлар фирмы Дюпон ), найлона, гидратцеллюлозы, бумаги, сизаля и других натуральных и синтетических волокон. Для получения специальных композитов используются волокна (или проволоки) из бора, бериллия, карбида кремния или нитрида 450  [c.450]

К числу других изученных композиционных систем с металлической матрицей относятся композиции с матрицами из алюминия, меди, титана, железа, кобальта, никеля, вольфрама и армирующими волокнами из карбида бора, карбида кремния или стальной, бериллиевой, вольфрамовой, молибденовой или танталовой проволоки. Эти системы обсуждались Гэлессо 112].  [c.46]

Борное волокно изготовляют методом осанодения бора из газовой фазы на вольфрамовую подлон<ку в результате разложения трихлорида бора в присутствии водорода. Вольфрамовая проволока нагревается пропусканием тока до 1100—1300° С и непрерывно протягивается через реакторы до получения борного покрытия необходимой толщины. Гэлассо [30] сообщил, что в процессе осаждения бора из вольфрамовой подложки образуется несколько боридов. Рентгеновский анализ борного волокна показывает наличие аморфной структуры, однако поверхность его зернистая (рис. 1). В настоящее время борное волокно в промышленном масштабе выпускается двух диаметров (100 и 140 мкм) и но желанию покупателя может иметь покрытие из карбида кремния толщиной 2 мкм, повышающее его жаростойкость.  [c.426]

Для армирования металлических КМ обычно используют непрерывные волокна углеродные (УВ), борные (В), оксида алюминия (AI2O3), карбида кремния (Si ), карбида бора (В4С), нитрида бора (BN), диборида титана (TiB2), оксида кремния (Si02). Также в качестве волокон применяют металлическую тонк>то проволоку, полученную методом волочения из стали, W, Ti, Мо и Be. Реже используют специально выращенные нитевидные кристаллы разных материалов.  [c.870]

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Пер-спективньши упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие = 15 000-н28 000 МПа и Е = 400 4-600 ГПа.  [c.424]

Армирующие волокна. Известно, что теоретическая прочность материала Отеор возрастает с повышением модуля упругости и поверхностной энергии вещества и снижается с увеличением межатомных расстояний. Исходя из этого наибольшей прочностью должны обладать композиты, в которых в качестве материала армирующих волокон используются бериллий, бор, азот, углерод, кислород, алюминий и кремний. При создании волокнистых композитов используют высокопрочные стеклянные, углеродные, борные и органические волокна, металлические проволоки или волокна и нитевидные кристаллы ряда карбидов, оксидов, бори-дов, нитридов и других соединений. Волокнистая арматура может быть представлена в виде моноволокон, нитей, проволок, жгутов, сеток, тканей, лент, холстов. Важными требованиями, предъявляемыми к волокнистой арматуре, являются их технологичность и совместимость с матрицей.  [c.115]


Смотреть страницы где упоминается термин Волокна (проволока) карбида кремния : [c.275]    [c.306]    [c.310]    [c.148]    [c.14]    [c.234]    [c.266]   
Структура и свойства композиционных материалов (1979) -- [ c.37 ]



ПОИСК



Волокна

Волокна (проволока)

Волокна карбида кремния

Карбид кремния

Карбиды

Кремний



© 2025 Mash-xxl.info Реклама на сайте