Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий армированный волокнами борными

Первой деталью, выбранной для этой программы, была хвостовая секция самолета Г-111, расположенная между двумя двигателями. Деталь имела следующие размеры полную длину 3764 мм (от отсека фюзеляжа, расположенного на отметке 610, отсчитываемой от носовой точки самолета, до отсека, расположенного на отметке 770), глубину 1219 мм, ширину 914 мм. Предназначенная для испытаний задняя (расположенная между отметками 673— 770 от носовой точки) секция этой детали имела длину 2464 мм. Передняя часть детали была спроектирована так, чтобы обеспечить разрушение в испытательной секции. Одной из задач программы являлось исследование возможностей применения трех типов перспективных композиционных материалов эпоксидных боро- и углепластиков и алюминия, армированного борными волокнами. Вследствие сокращения поставок борных волокон вскоре после начала выполнения программы основное внимание было уделено углепластикам. Для упрощения технологии и снижения стоимости оборудования форма поперечного сечения первой фюзеляжной детали была выбрана постоянной в отличие от основной алюминиевой конструкции, имеющей переменное сечение. Расчетные нагрузки определяли из типовых критических расчетных условий для каждого узла.  [c.159]


Алюминий, армированный борными волокнами, был использован в конструкции рамы каркаса, расположенной на отметке 700. Толщина стенки 1,52 мм.  [c.161]

По-видимому, циклическая стабильность (отсутствие как упрочнения, так и разупрочнения) характерна для металлов, армированных волокнами, в противоположность обычно наблюдаемому циклическому упрочнению в отожженных металлах или циклическому разупрочнению в предварительно упрочненных металлах. Циклически стабильное напряженно-деформированное состояние алюминиевых сплавов, армированных либо вязкой бериллиевой проволокой, либо хрупкими борными волокнами, показано на рис. 3. Циклическое упрочнение технически чистого алюминия необычно тем, что оно не достигает величины насыщения, как у большинства металлов, а происходит непрерывно вплоть до разрушения [52] на рис. 3 для сравнения с поведением композитов показано непрерывное упрочнение алюминия 1235. В [55] сообщалось, что алюминий 6061-Т6, армированный непрерывными волокнами бора с объемным содержанием 25 и 40%, циклически упрочняется, но величина упрочнения минимальна и состояние композита может быть охарактеризовано как циклически стабильное.  [c.404]

Возможны случаи, когда композиция содержит два или три армирующих компонента различной геометрии например, пластик на основе эпоксидной или полиимидной смолы, армированный углеродными волокнами (одномерный компонент) и короткими нитевидными кристаллами карбида кремния (нуль-мерный компонент), или композиция на основе алюминия, армированного борными волокнами (одномерный компонент) и слоями титановой фольги (двухмерный компонент). Такие композиционные материалы следует называть комбинированными.  [c.51]

Важнейшей характеристикой материалов, применяемых для изделий авиационной и космической техники, а также для изделий других отраслей машиностроения, является удельная прочность, т. е. отношение временного сопротивления к произведению плотности на ускорение свободного падения. Если для улучшенной стали 40Х удельная прочность равна 13 км, то для титанового сплава после термической обработки она увеличивается до 31 км, а для алюминия, армированного борным волокном, — до 43 км. Таким образом, повышение удельной прочности приводит к значительному сокращению материалоемкости изделий.  [c.7]

Алюминиевые матричные сплавы 427 Алюминием плакированный 79, 80 Алюминий, армированны й волокнами борными 424 углеродными 340 Аморфная структура 39 Анизотропия механических свойств 152  [c.499]


Обычные алюминиевые сплавы используются при темпера-турах до 200 С, а КМ на основе алюминия, армированного углеродными и борными волокнами, можно применять для работы при температурах до 450° С никелевые жаропрочные сплавы используют при температурах до 1050° С, а КМ на основе никелевых сплавов, армированных вольфрамовыми волокнами — до температуры 1150 С.  [c.352]

Механическая связь возникает в том случае, когда упрочни-тель имеет шероховатую поверхность. Такую поверхность имеют борные и другие волокна, выращенные осаждением из пара. Хилл и др. [16] исследовали этот тип связи, измеряя прочность армированного вольфрамом алюминия с различными степенями механического сцепления. Вольфрамовую проволоку диаметром 0,203 мм стравливали до 0,155 мм на длине 2,5 мм, оставляя диаметр неизменным на длине 0,63 мм. Композит с 12% волокна изготовляли путем вакуумной пропитки расплавленным алюминием. По результатам испытаний на продольное растяжение были оценены три состояния материала (табл. 1).  [c.80]

Методом пропитки в вакууме получают композиционные материалы на основе алюминия и магния, упрочненные борными волокнами и нитевидными кристаллами на основе никелевых сплавов, армированные вольфрамовой проволокой и др.  [c.99]

Среди полимерных материалов, армированных непрерывными волокнами, углепластики - одни из наиболее перспективных. В настоящее время для получения армированных пластиков используются, как известно, не только углеродные волокна. Уже продолжительное время применяются борные волокна, которые по сравнению с углеродными волокнами обладают большей жесткостью. Арамидные волокна, с появлением которых изменились наши представления о свойствах органических волокон, имеют значительно меньшую плотность, чем углеродные волокна. Волокна из карбида кремния и оксида алюминия весьма стойки к воздействию высоких температур. Поэтому углеродные волокна используют тогда, когда они могут успешно конкурировать по свойствам с другими волокнами. Недостатки материалов на основе углеродных волокон можно компенсировать, используя гибридные армированные пластики, которые получают путем сочетания в одном материале углеродных и других типов волокон. Таким образом, при создании современных композиционных материалов применяют дифференцированный подход к выбору волокон или их комбинаций.  [c.263]

Для упрочнения алюминия, магния и их сплавов применяют борные (тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Так, волокна карбида кремния диаметром 100 мкм имеют ag= 2500...3500 МПа, =450 ГПа. Нередко в качестве волокон используют проволоку из высокопрочных сталей. Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана. Для никелевых сплавов повышение жаропрочности достигается армированием их вольфрамовой или молибденовой проволокой.  [c.235]

Основная проблема при армировании алюминия волокнами бора — предотвращение взаимодействия бора с алюминием. Поэтому промышленный композиционный материал (ВКА-1), содержащий 50% волокон бора, был получен диффузионной сваркой пакета, составленного из чередующихся листов алюминиевой фольга с закрепленными на них слоями борных волокон. Покрытие борного волокна нитридом бора или карбидом кремния (волокно борсик) снижает его взаимодействие с алюминиевой матрицей даже в расплавленном состоянии. В этом случае открывается возможность получения композиционного материала жидкофазными методами.  [c.276]

В ближайшем будущем композитом промышленного значения, имеющим более низкую стоимость, по-видимому, будет алюминий, армированный волокнами из углерода и корунда. Данные, приведенные на рис. 1, в, г, показывают, что боралюминий не имеет преимущества по сравнению с борэпоксидным материалом. Однако в ряде случаев применение боралюминия может быть более эффективным, например для гасителей вихревых токов в сверхпроводящих электрических машинах, где требуется высокая электропроводность в сочетании с прочностью и жесткостью конструкции. Фактором, ограничивающим применение боралюминия при низких температурах, является его значительная теплопроводность. Как и борпластик, композиционный материал борное волокно — сплав 6061 при 4 К обладает прекрасными характеристиками и высокой стабильностью свойств [8].  [c.77]


Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]

Купер и Келли [7], а также Тетельман [47], считают, что уравнение (12) позволяет достоверно оценить вклад матрицы в вязкость разрушения меди, армированной вольфрамовой проволокой. Герберих [12] указал, однако, что, несмотря на возможность разумных количественных оценок, уравнение (12) некорректно, поскольку композит трехмерен, а волокна имеют не квадратное, а круглое сечение. По Олстеру и Джонсу [31], в алюминии, армированном от О до 6 об.% вольфрама, упрочнитель не оказывает существенного влияния на вязкость матрицы. Те же авторы предположили, что в композите бор — алюминий, содержащем 50 об.7о упрочнителя, вязкость разрушения матрицы практически не зависит от борных волокон. Такое предположение может быть оправдано лишь в случае, если деформация матрицы у вершины трещины локализована на столь малом участке, что на нее не влияет присутствие волокон. Поэтому к каждому композиту в зависимости от его поведения необходим индивидуальный подход. Будет ли вязкость разрушения матрицы столь же низка, как и для массивного образца материала матрицы, или несколько выше —это, согласно Куперу и Келли [7], определяется влиянием волокон. Если поверхность раздела прочна, а коэффициент вариации прочности волокон велик, то, по Меткалфу и Кляйну [27], места разрушения волокон будут характеризоваться значительным пространственным разбросом это может привести к увеличению деформации матрицы, а последнее, в свою очередь, — к росту вязкости разрушения.  [c.288]

Алюминий — борное волокно — стальная проволока. Одним из недостатков композиционных материалов на основе алюминия, упрочненных однонаправленным борным волокном, является их низкая прочность в направлении, перпендикулярном к направлению укладки борных волокон. Дополнительное армирование композиций небольшим количеством (5—6 об. %) высокопрочной стальной проволоки, уложенной перпендикулярно борному волокну, позволяет в 1,5—2,5 раза повысить прочность в поперечном направлении.  [c.138]

I - алюминий, армированный углеродными волокнами и изготовленный из полуфабриката в виде проволоки, полученной методом пропитки в расплавленном металле 2 - композиционный материал 6061А1 — борные волокна.  [c.256]

Рис. 4. Развитие усталостных повреждений в алюминии 6061-0, армированном борным волокном (40%) R = 0,2, о а = 0,73 Н/им (106 000 фунт/дюйм ), Nf = 127 000 циклов [23]. Символами вит отмечены соответственно единичные (single) и множественные (multiple) разрывы. Рис. 4. Развитие <a href="/info/121642">усталостных повреждений</a> в алюминии 6061-0, армированном <a href="/info/38690">борным волокном</a> (40%) R = 0,2, о а = 0,73 Н/им (106 000 фунт/дюйм ), Nf = 127 000 циклов [23]. Символами вит отмечены соответственно единичные (single) и множественные (multiple) разрывы.
Точечная сварка боралюминия. Точечная сварка является одним из наиболее надежных и дешевых способов соединения бор алюминиевых композиций как между собой, так и с алюминиевыми сплавами. Высокое качество и надежность соединения объясняются тем, что волокна в месте сварки не перерезаются и не подвергаются длительному воздействию высоких температур. Для точечной сварки используют обычную сварочную аппаратуру. Режимы сварки легко контролируются. Наличие борных волокон резко снижает тепло- и электропроводность материала по сравнению с алюминием, волокна препятствуют свободному распределению расплава и формированию ядра. Тем не менее была разработана технология точечной сварки боралюминия, позволяющая получать прочные соединения [151]. Производилась сварка одноосноармированного боралюминия (50 об. % волокна), боралюминия с перекрестным армированием (45 об. % волокна) и алюминиевого сплава 6061 в различных сочетаниях.  [c.193]

Коэффициент термического расширения компози-ционйого материала на алюминиевой основе при температуре выше 350° близок к коэффициенту термического расширения волокон бора, содержание которых составляет 30 процентов. Коэффициент термического расширения алюминия, содержащего 70 процентов волокон кварца, значительно приближается к коэффициенту термического расширения кварцевой арматуры. Шпангоут для самолета из алюминиевого сплава весит 45 килограммов. Используя армированный борными волокнами титан, удалось снизить его вес до 25 килограммов. Благодаря большой жесткости таких шпангоутов расстояние между ними увеличили вдвое, что привело к уменьшению количества крепежных деталей. Снижая таким образом вес -самолета, можно увеличить его нагрузку, не уменьшая скорости.  [c.128]


Для армирования металлических КМ обычно используют непрерывные волокна углеродные (УВ), борные (В), оксида алюминия (AI2O3), карбида кремния (Si ), карбида бора (В4С), нитрида бора (BN), диборида титана (TiB2), оксида кремния (Si02). Также в качестве волокон применяют металлическую тонк>то проволоку, полученную методом волочения из стали, W, Ti, Мо и Be. Реже используют специально выращенные нитевидные кристаллы разных материалов.  [c.870]

Упрочнение алюминия и его сплавов более дорогими волокнами В, С, AI2O3 повышает стоимость КМ, но при этом улучшаются некоторые его свойства. Например, при армировании борными волокнами модуль упругости увеличивается в 3 - 4 раза, углеродные волокна способствуют снижению плотности. На рис. 14.36 и ниже показано влияние объемного содержания волокон бора Vb на прочность и жесткость композиции алюминий — бор  [c.465]

Контактные процессы для металлических расплавов можно разделить на две группы матрица и арматура растворимы друг в друге, но продукты взаимодействия не образуются на поверхности раздела образуются новые продукты взаимодействия. Контактные процессы первой группы характерны для железоуглеродистых сплавов, для которых большое значение имеют диффузионные процессы углерода в железо. Во второй группе происходит образование новых оксидных соединений, карбидов, шпинелей. Формирование контактных зон зависит от скоростей реакций и диффузии элементов. Примерами контактных пар, дающих продукты взаимодействия, могут служить алюминий и титан, армированные борными волокнами, которые частично растворяются с образованием диборидов алюминия и титана — А1В2 и Т1В2.  [c.676]


Смотреть страницы где упоминается термин Алюминий армированный волокнами борными : [c.160]    [c.399]    [c.225]    [c.20]    [c.272]    [c.866]    [c.234]   
Структура и свойства композиционных материалов (1979) -- [ c.96 , c.110 , c.133 ]



ПОИСК



Алюминий — бор (волокно)

Армирование

Армирование волокнами

Борн (Bom

Борная

Борнит 789, XII

Волокна

Волокна борные



© 2025 Mash-xxl.info Реклама на сайте