Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаропрочные стали свойства

Мо, дефицитный элемент (в конструкционных сталях 0,2—0,6%), повышает прочность и твердость стали, незначительно снижает пластичность и вязкость, уменьшает отпускную хрупкость. В инструментальных (быстрорежущих) сталях Мо повышает красностойкость. Наиболее ценным свойством Мо является жаропрочность стали.  [c.158]

Жаропрочность сталей и сплавов, характеризуемая и о , зависит от природы и свойств твердого раствора основы температур плавления, рекристаллизации и атомных связей, соответствующих определенному типу кристаллической решетки основы легирующих элементов термической обработки величины зерна и характера обработки поверхности деталей.  [c.201]


Механические свойства аустенитных гомогенных жаропрочных сталей  [c.213]

Механические свойства аустенитных дисперсионно-твердеющих жаропрочных сталей (ГОСТ 5632—61)  [c.213]

Прочностные свойства жаропрочных сталей при кратковременных испытаниях при различных температурах приведены в табл. 11.  [c.54]

Графит оказывает сильное влияние на основные свойства чугуна, в первую очередь на прочность и пластичность, характеризующие чугун как конструкционный материал. Он обладает такими преимуществами, которыми не обладают легированные и жаропрочные стали и сплавы. Графит имеет способность хорошо смазывать работающие при трении в паре чугунные и стальные детали при высоких температурах (800 - ЮОО°С).  [c.61]

Влияние алюминия на прочностные свойства конструкционных и жаропрочных сталей  [c.68]

Жаропрочность сталей ванадий повышает вследствие образования дисперсных карбидов, нитридов, способствуя тем самым сохранению при рабочих температурах высокой твердости, малого коэффициента теплового расширения, устойчивости против разгара и высокотемпературного истирания. Он улучшает технологичность инструментальных сталей, снижает чувствительность к перегреву, обезуглероживанию, трещинообразованию, повышает технологическую пластичность. На литейные технологические свойства сталей и сплавов влияние ванадия исследовано недостаточно.  [c.87]

На технологические свойства разработанной стали (жидкотеку-чести, усадки, трещиноустойчивости) существенно влияют при модифицировании модификаторы на основе бора и циркония в количестве до 0,1% (см. рис. 134). Влияние титана и иттрия на этот процесс в пределах тех же концентраций незначительно. Механические свойства жаропрочной стали приведены в табл. 104.  [c.387]

Механические свойства жаропрочной стали  [c.388]

Углеродистые стали при высоких температурах сильно окисляются, на их поверхности образуется окалина. В связи с этим применяют специальные жаростойкие и жаропрочные стали, содер-жаш,ие различные легирующие добавки. Жаростойкостью называется свойство материала противостоять при высоких температурах химическому разрушению поверхности, а жаропрочностью — способность сохранять при высоких температурах механические свойства. В настоящее время созданы специальные сплавы, а также металлокерамические материалы, надежно работающие при температурах до 1000 С.  [c.123]

Углерод увеличивает предел прочности, предел текучести стали, снижает ее пластичность и ударную вязкость. Кремний повышает прочностные и снижает пластические свойства, повышает жаростойкость (окалиностойкость) стали. Марганец влияет на прочность и прокаливаемость стали (увеличивает). Уменьшение пластичности стали наблюдается при содержании марганца более 1,5 %. В высоколегированных жаропрочных сталях марганец применяют для частичной замены дефицитного никеля. Алюминий используют для повышения жаропрочности и жаростойкости стали.  [c.222]


О ВОЗМОЖНОСТИ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ КАЧЕСТВА ТЕРМИЧЕСКОЙ ОБРАБОТКИ И МЕХАНИЧЕСКИХ СВОЙСТВ ВЫСОКОЛЕГИРОВАННЫХ КОРРОЗИОННОСТОЙКИХ, ЖАРОСТОЙКИХ и ЖАРОПРОЧНЫХ СТАЛЕЙ  [c.93]

О возможности неразрушающего контроля качества термической обработки и механических свойств высоколегированных коррозионностойких, жаростойких и жаропрочных сталей. М е л ь г у й М. А.,  [c.258]

Эти металлы в составе сплавов улучшают защитные свойства сложных окисных слоев и входят в состав некоторых жаропрочных сталей.  [c.15]

Жаропрочная сталь с удовлетворительными литейными свойствами, не склонна к МКК. Детали насосов, запорной арматуры, фильтров. До 800° С  [c.36]

Рис. 33. Зависимость механических свойств жаропрочных сталей с карбидным упрочнением от температуры Рис. 33. Зависимость <a href="/info/59236">механических свойств жаропрочных</a> сталей с <a href="/info/569780">карбидным упрочнением</a> от температуры
Режимы термической обработки и механические свойства жаропрочных сталей с карбидным упрочнением  [c.164]

СЛОЖНОЛЕГИРОВАННЫЕ 12%-ные ХРОМИСТЫЕ нержавеющие и жаропрочные стали Свойства и структура  [c.125]

Жаропрочные стали и сплавы обладают высокими механическими свойствами при повышенных температурах и способностью сохранять их в данных условиях в течение длительного времени. Для придания отих свойств сталям н сплавам их обычно легируют элементами-упрочнителями, молибденом и вольфрамом (до 7% каждого). Важной легирующей присадкой, вводимой в пекоторые стали п сплавы, является бор. В ряде случаев к этим металлам предъявляется требование и высокой жаростойкости.  [c.281]

Аустенитные жаропрочные стали обладают рядом общих свойств — высокой жаропрочностью и окалиностойкостьк>, большой пластичностью, хорошей свариваемостью, большим коэффициентом линейного расширения. Тем не менее по сравнению с перлитными и мартенситными сталями они менее технологичны обработка давлением резанием этих сплавов затруднена сварной шов обладает повышенной хрупкостью полученное вследствие перегрева крупнозернистое строение не может быть исправлено термической обработкой, так как в этих сталях отсутствует фазовая перекристаллизация. В интервале 550—600°С эти стали часто охрупчиваются из-за выделения по границам зерна различных фаз.  [c.470]

В результате ЭШП содержание кислорода в металле снижается в 1,5—2 раза, понижается концентрация серы, в 2—3 раза уменьшается содержание неметаллических включений, они становятся мельче и равномерно распределяются в объеме слитка. Слиток отличается плотностью, однородностью, хорошим качеством поверхности благодаря наличию шлаковой корочки 5, высокими механическими и эксплуатационными свойствами стали и сплавов. Слитки выплавляют круглого, квадратного, прямоугольного сечения массой до ПО т. Наиболее широко ЭШП используют при выплавки высококачественных сталей для шарикоподшипников, жаропрочных сталей для дисков и лопаток турбин, валов компрессоров, авиацпониых конструкций.  [c.47]

Мехаиичсскис свойства жаропрочных сталей, полученных при кратковременных испытаниях  [c.54]

На свойства жаропрочных сталей углерод в целом оказывает положительное влияние. Его способность к большей растворимости в у-жслезе в твердом растворе по  [c.73]

Цирконий как легирующий элемент в литейном производстве пока применяется редко. В основном его используют как модификатор например, при выплавке жаропрочных сталей его добавка в количестве 0,3 - 0,4% в состав стали 40Х5МФЧЮРЛ (применяемой для изготовления пресс-форм) значительно улучшает ее литейные свойства. При выплавке стали в качестве легирующих материалов использовали ферросиликоцирконий ФЦ5.  [c.83]

Первыми работами, в которых была показана возможность повысить некоторые механические свойства жаропрочных сталей аустенитного класса методом ВМТО, явились исследования В. Д. Садовского с сотрудниками [16, 70, 74—76]. В дальнейшем систематические работы по влиянию ВМТО на структуру и свойства жаропрочных сталей были проведены М. Г. Лозинским, Е. Н. Соколковым и др. на широком круге металлов и сплавов [13, 14, 71, 73, 77—81].  [c.44]


В первой части книги представлены некоторые вопросы теории и практики методов, разрабатываемых в Отделе физики неразрушающего контроля АН БССР, а также результа-1Ы исследования физических процессов и явлений, протекающих в материалах при воздействии переменных и постоянных полей, статических и динамических нагрузок. В области теории нелинейных процессов в ферромагнетиках получены общие соотношения для расчетов гармонических составляющих э. д. с. накладных преобразователей в зависимости от коэрцитивной силы, максимальной и остаточной индукции при наложении постоянного и переменного полей. Даны обзор по теории феррозондов с поперечным и продольным возбуждением, практические рекомендации по их применению. Приведены результаты исследований магнитостатических полей рассеяния на макроскопических дефектах, обоснована возможность их моделирования, рассмотрены режимы записи указанных полей при магнитографической дефектоскопии, обеспечивающие максимальную выяв ляёмость дефектов. Анализируется характер изменения магнитных, механических и структурных свойств высоколегированных и жаропрочных сталей в зависимости от режимов термической обработки для обоснования метода контроля по градиенту остаточного поля ири импульсном локальном намагничивании, который широко используется при контроле механических свойств низкоуглеродистых сталей.  [c.3]

В то же время высокие требования к качеству изделий из нержавеющих, жаропрочных сталей часто требуют 100%-ного контроля механических свойств. Однако в силу существующих методик прямых испытаний механических свойств 100%-но можно контролировать только твердость, а предел текучести, предел прочности, относительное удлинение и сужение —только выборочно на образцах по твердости — по специальным таблицам. Но на мноТих изделиях даже твердость, по Роквеллу или Бринеллю, не всегда удается замерить — это детали сложной конфигурации, большие по весу и объему сварные изделия. Тогда прибегают к сравнительным методам (например, по методу Польди). Вот почему для этого класса сталей важны разработка и внедрение неразрушающих методов контроля механических свойств и качества термической обработки.  [c.94]

Механические свойства м режимы термической обработки жаропрочных сталей с ннтермсталлилным упрочнением  [c.168]

Механические свойства хромоникелевой жаропрочной стали ЭИ696  [c.174]

Жаропрочность стали ЭИ696М в больших сечениях после закалки на воздухе не понижается так резко, как это наблюдается у стали ЭИ696. Охлаждение в масле после нагрева под закалку обеспечивает стабильные жаропрочные свойства в больших сечениях обеих марок сталей.  [c.174]

Рис. 69. Зависимость механических свойств сложнолегированных литейных хромоникелевых жаропрочных сталей от температуры Рис. 69. Зависимость механических свойств сложнолегированных литейных хромоникелевых <a href="/info/51123">жаропрочных сталей</a> от температуры

Смотреть страницы где упоминается термин Жаропрочные стали свойства : [c.286]    [c.288]    [c.191]    [c.157]    [c.331]    [c.82]    [c.42]    [c.347]    [c.101]    [c.153]    [c.112]    [c.102]    [c.632]    [c.639]   
Справочник азотчика том №2 (1969) -- [ c.276 ]



ПОИСК



Высоколегированная коррозионностойкая. жаростойкая и жаропрочная стали и их свойства

Жаропрочность

Жаропрочные КЭП

Жаропрочные свойства

Жаропрочные стали 115, 156—177

Жаропрочные стали Физические свойства

Механические свойства некоторых нержавеющих, окалиностойких и жаропрочных марок стали

Механические свойства некоторых нержавеющих, окалиностойких и жаропрочных марок стали при низких и повышенных температурах

Основные свойства и примерное назначение высоколегированной нержавеющей, кислотостойкой, огнестойкой и жаропрочной стали

Состав и свойства жаропрочной стали аустенитного класса

Среднелегированные стали теплоустойчивые и жаропрочные Механические свойства

Стали для клапанов и жаропрочные стали Основные обозначения, химический состав, механические свойства, режимы термической обработки и применение сталей

Хромоникелевые стали жаропрочные Механические свойства



© 2025 Mash-xxl.info Реклама на сайте