Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема существования для сингулярных интегральных уравнени

Многосвязная область с отверстиями и трещинами. Пусть в бесконечной плоскости имеется один замкнутый криволинейный разрез L, разбивающий всю плоскость на две области внутреннюю 5+ и внешнюю 5 Предположим, что при переходе через контур L напряжения остаются непрерывными q t)=0), а вектор смещений получает скачок g t). Тогда комплексные потенциалы Ф г) и 4 (2) определяются по формуле (1.66), а неизвестная функция g t) удовлетворяет уравнению (1.67) (при q t)=0), т. е. сингулярное интегральное уравнение первой основной задачи (при заданной на границе L нагрузке) является одним и тем же для внутренней и внешней области. Из теоремы единственности следует, что для существования решения необходимо выполнение условий равновесия области 5+ (равенство нулю главного вектора и главного момента внешних усилий, действующих на контуре L), т. е. интегральное уравнение в этом случае имеет решение при дополнительных условиях, которым должна удовлетворять правая часть уравнения (следовательно, союзное однородное интегральное уравнение имеет нетривиальное решение). Таким образом, задача является некорректной. Для ее регуляризации в работах [94,  [c.19]


В работе [36] в уточненной постановке рассмотрена симметричная контактная задача для полуплоскости и параболического штампа д х) = 7ж . С использованием метода П. И. Мусхелишвили обращения сингулярных интегральных уравнений [29] доказана теорема существования решения поставленной задачи и установлено, что характер поведения контактного давления на концах области контакта имеет вид  [c.251]

Купрадзе показал, что в случае сингулярных интегральных уравнений теории упругости классическая теория Фредгольма остается в силе. В уже цитированной книге он дал доказательство теоремы единственности и теоремы существования решения как для внутренней, так и для внешней задачи.  [c.617]

Предлагаемая книга посвящена применению методов потенциала к основным граничным задачам теории упругости. Исследования на эту тему занимали автора и раньше [13 а, г, е], но настоящая работа отличается от прежних тем, что в ней впервые, наряду с однородными телами, рассматриваются также кусочно-неоднородные и доказываются теоремы существования для основных граничных задач таких тел. Второй особенностью книги является построение всей теории граничных задач на базе теории сингулярных интегральных уравнений. Это позволило, с одной стороны, расширить круг исследуемых граничных задач (контактные задачи, смешанные задачи) и, с другой стороны, обнаружить новые возможности метода При точном и приближенном решении многих задач Наконец, третья особенность книги заключается в том, что в ней впервые излагаются два новых способа приближенного решения граничных задач.  [c.7]

Теоремы единственности играют особо важную роль для математического изучения задач физики и механики без исследования единственности (или неединственности) решения математической задачи нельзя утверждать, что полученное решение действительно описывает исследуемое физическое состояние. Кроме того, мы увидим, что интересующие нас задачи классической теории упругости, микрополярной упругости и термоупругости приводят к определенным системам линейных сингулярных интегральных уравнений и для этих систем остается в силе классическая теория интегральных уравнений Фредгольма второго рода. Благодаря этому, из теорем единственности мы получим также теоремы существования.  [c.120]

Недавно Т. Г. Гегелия, пользуясь теорией сингулярных интегральных уравнений и несколько другим подходом к проблеме, получил теоремы существования для основных граничных задач эластостатики в случае однородных упругих тел, ограниченных поверхностями более широкого класса, чем поверхности Ляпунова [5е].  [c.7]


Теоремы существования, которые мы доказали выше, опираясь на теорему о простоте полюсов резольвенты, могут быть доказаны и в том случае, когда полюс резольвенты не предполагается простым. Для интегральных уравнений Фредгольма и для задач о колебании мембраны и об упругих колебаниях это было показано автором в работах [13а, д.]. Позже (1952 г.) к тем же результатам в частном случае задачи Дирихле и только для уравнения мембраны пришел Вейль в работе [46]. Для того чтобы указанный метод распространить на системы сингулярных интегральных уравнений, необходимо теорию этих уравнений, изложенную в гл. V, дополнить теорией главных функций и канонических ядер Гурса [7], что, конечно, нетрудно сделать. Мы, однако, на этом не останавливаемся, так как в теории упругости, как мы видели, случаи полюсов высших порядков не встречаются.  [c.205]

Однако нет необходимости делать это. Теория систем одномерных сингулярных интегральных уравнений с ядрами типа Коши общего вида была разработана достаточно подробно еще в сороковых годах и изложена в [246] и в [13а]. Было показано, что, в отличие от систем уравнений Фредгольма, для систем сингулярных уравнений, вообще говоря, не имеет места теорема о равенстве нулю разности чисел линейно-независимых решений данной и сопряженной систем доказывается, что эта разность равна так называемому индексу системы, введенному в простейшем случае одного уравнения Неттером и распространенному для систем уравнений Мусхелишвили [246]. Таким образом, только в том частном случае, когда индекс системы сингулярных уравнений равен нулю, мы имеем случай Фредгольма и теорию разрешимости, аналогичную теории Фредгольма. Ниже будет показано, что уравнения (D ), (DJ, (Г,), (7 J относятся именно к этому типу и для них, в частности, остаются справедливыми основные теоремы и альтернатива Фредгольма кроме того, уравнения (D ), и (DJ, (7 г) являются попарно взаимно-сопряженными. Основываясь на этих свойствах полученных уравнений, в следующем параграфе мы докажем теоремы существования для первой и второй задач.  [c.266]

Название метод граничных элементов , впрямую привязанное к дискретизации границы для проведения вычислений, вряд ли могло появиться до тех пор, пока численное решение сложных задач на ЭВМ не стало общедоступным — интегральные уравнения родились и долгое время оставались не средством численного решения задач, а мощным орудием теоретического исследования проблем математической физики. С их помощью доказывались теоремы существования и единственности решения краевых задач в различных классах функций, выяснялся характер сингулярностей в особых точках, изучались спектры операторов, соотношения между исходными и сопряженными уравнениями и т. д. Эта большая работа оставила заметный след в развитии математики. Достаточно назвать имена Э. Бетти, В. Вольтерры, Д. Гильберта, Ж- Лиувилля, Дж. Лауричеллы, А. М. Ляпунова, К. Неймана, А. Пуанкаре, С. Сомильяны, Э. Фредгольма, чтобы почувствовать сколь значительны результаты, полученные в теории интегральных уравнений.  [c.266]


Методы потенциала в теории упругости (1963) -- [ c.445 ]



ПОИСК



Сингулярность

Существование

Теорема существования

Теорема существования для сингулярных интегральных уравнени Si) динамической

Теорема существования для сингулярных интегральных уравнени Si) статической

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте