Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термические печи для азотирования

По назначению различают термические печи для отжига, нормализации, закалки, отпуска, азотирования и цианирования.  [c.126]

Печь для азотирования полунепрерывного действия США-8.12/6 приведена на рис. 122. Максимальная температура печи 650 °С. Печь укомплектована газовым щитом, который служит для периодического контроля и регулирования расхода, давления и степени диссоциации аммиака. Шахтные электрические печи для азотирования полунепрерывного действия предназначены для термических цехов с большим объемом производства.  [c.233]


В настоящее время создан ряд вакуумных термических печей различного исполнения и назначения. Вакуумный метод нагрева применяют взамен нагрева Б защитных газовых атмосферах и нагрева в расплавах солей. Широко ведутся работы по использованию вакуумных печей для химико-термической обработки (цементации, азотирования).  [c.469]

Длительность выдержки деталей в потоке аммиака в печи влияет на глубину азотированного слоя. В среднем при 500° С азот за каждые 10 час. диффундирует на глубину 0,1 мм. На практике для сокращения времени азотирования процесс ведут путем ступенчатого нагрева вначале в течение 12—15 час. при температуре 500— 520° С, а затем температуру поднимают до 550—600° С и дают выдержку 15—20 час. При таком режиме длительность процесса удается сократить в 2—2,5 раза. В результате азотирования твердость стали достигает НВ 1000—1100, при этом последующей термической об- работки не требуется.  [c.160]

Большой интерес для современного машиностроения представляют опоры трения, выполненные из титана. Однако в литературе пока встречается ограниченное число случаев их успешного практического использования. Это объясняется склонностью титановых сплавов к схватыванию и задиру при трении, к пластическому деформированию и наклепу поверхностного слоя, повышенному износу и переносу титана на поверхность трения контртела. Смазывание жидкими смазочными материалами не улучшает антифрикционные свойства пары трения, а твердые смазки плохо удерживаются на поверхности трения из-за низкой адгезии к титану. Для повышения антифрикционных свойств титана применяют упрочнение его поверхности путем насыщения кислородом (оксидирование), азотом (азотирование), нанесения электролитических покрытий (хромирование, никелирование и др.), электролитического сульфидирования и обработки давлением обкатыванием и виброобкатыванием. Наиболее технологичным и эффективным является способ термического оксидирования, состоящий в нагреве в электрических печах с доступом воздуха при температуре 700—800 °С. Результаты упрочнения титана различными способами химико-термической обработки даны в работе [34], а подробная технология термического оксидирования в [83]. Авторы последней работы рекомендуют материалы подшипников с валом из оксидированного титана и допускаемые параметры трения, полученные на машинах трения МИ-1М, СМЦ-2 и Б-4. Наиболее употребительные из этих материалов приведены в табл. 41, откуда видно, что  [c.156]


По назначению различаются термические печи для отжига, нормализации, закалки, отпуска, азотирования, цианирования. Основное требование, предъявляемое к печам для отжига — обеспечение равномерного нагрева и необходимой скорости охлаждения. Печи для закалки должны иметь специальные устройства для облегчения передачи изделий из печи в закалочный бак. Печи для отпуска требуют большой точности регулирова(1ия температуры и равномерного нагрева всех деталей в печи.  [c.130]

Для хил1ико-термической обработки (цементации, азотирования и т. д.) используются вертикальные печи цилиндрической формы с муфелированием пламени в так называемых радиационных трубах (фиг. 83).  [c.223]

ИЗ окалиностойкой стали, установленную в печи вертикально. В эту реторту закладываются детали, крышка реторты гсрмстн-чески закрывается, в реторту впускается соответствующий газ (защитный или предназначенный для химико-термической обработки), а нагрев производится печными газами, циркулирующими в кольцевом пространстве между внутренней стенкой печи и наружной стенкой муфеля. В электрических муфельных печах нагреватели размещаются в этом же кольцевом пространстве. Таковы шахтные печи для светлого отжига, светлой нормализации, газовой цементации, азотирования. Для газовой цементации мелких  [c.105]

В отличие от 1нахтных печей с непосредственным обогревом муфельные печи применяются в основном для химико-термической обработки, например, для газовой цементации, для азотирования и тому подобных операций. При операциях термической обработки до 900—950° печи делаются с металлическим муфелем при необходимости иметь более высокую температуру муфели делаются керамическими, например, карборундовые для нагрева до 1300°.  [c.132]

На машиностроительных заводах широкое применение нашли газовые прямоточные способы азотирования, цементации и нитроцементации. Это более совершенные виды химико-термической обработки, но и они имеют существенные недостатки. Газовая цементация в проходных печах требует большого расхода природного газа, который после неполного сжигания в газогенераторах используется как балластный газоноситель небольшого количества углеводородов и аммиака. Кроме того, после цементации или нитроцементации необходима закалка и низкий отпуск для получения высокой твердости на поверхности детгилей. При этом возможно коробление деталей, а значит, требуется шлифование поверхности со всеми предосторожностями от перегрева.  [c.220]

Одним из основных параметров при разработке технологий термической обработки, обеспечивающих требуемые свойства готовой продукции, является состав атмосферы, в которой обрабатываются детали. Использование контролируемых атмос р позволяет сохранять требуемый состав поверхности сплава после его нагрева, выдержки и охлаждения или насыщать ее углеродом, азотом, кислородом, водородом, металлами совместно или раздельно в зависимости от поставленных задач. В связи с этим атмосферы подразделяют на насыщающие и защитные. Первые обычно используют при цементации, нитроцементации, карбонитрировании, азотировании, вторые — при спекании, улучшении, нормализации, отжиге, пайке. В обоих случаях атмосферы включают газ-носитель (N2, СОа, Hj) и активный газ ( gHg, QHe, NH3). Наиболее распространенные в автостроении наполнители атмосферы, их основной состав и назначение представлены в табл. 1, Активные газы при нагреве под закалку и отжиг обычно добавляют в пределах 0,2—15% для температур до 900—925 С их содержание не превышает 10%, а для процессов, происходящих при температурах 1000— 1100 С, нижний предел их содержания не менее 1%. В последнее время начали использовать атмосферы, получаемые непосредственно в рабочем пространстве печи за счет введения в нее некоторых органических соединений. В этом случае специальными приборами необходимо контролировать не только основной состав атмосферы по заданному углеродному потенциалу, но и влажность и давление в печи. В США также отмечается тенденция замены атмосфер, приготовляемых методом сжигания природного газа, азотными атмосферами [8].  [c.526]

Более универсальными и пригодными для всех теплостойких инструментальных сталей являются азотирование, низкотемпературное цианирование, нитроцементация, карбонитрация (с последующим оксидированием), выполняемые в печах или соляных ваннах после термической обработки или в качестве последней операции. Влияние их на свойства и стойкость инструментов примерно одинаково. На поверхности инструмента в результате выполнения этих обработок создается слой высокой твердости (до 70...71 HR ), износостойкости, теплостойкости, возникают полезные сжимающие напряжения и уменьшается налипание (адгезионное взаимодействие с обрабатываемым материалом). Остальные свойства инструмента определяются свойствами сердцевины.  [c.103]



Смотреть страницы где упоминается термин Термические печи для азотирования : [c.395]    [c.224]    [c.165]   
Металловедение и термическая обработка (1956) -- [ c.1126 ]



ПОИСК



Азотирование

Термические печи



© 2025 Mash-xxl.info Реклама на сайте