Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КОЛЕБАНИЯ - КОЛЬЦА колец изгибные — Частота

Следовательно, изгибная жесткость многослойной конструкции при наличии контактного давления между слоями, вызванного предварительным напряжением или же внутренним давлением, имеет кусочно-линейный характер. Задачи расчета пространственного упругого напряженно-деформированного состояния многослойных конструкций являются нелинейными. Колебания многослойной конструкции при наличии контактного давления между слоями, вызванного предварительным напряжением или внутренним давлением, нелинейные. Затухание от начальной амплитуды до амплитуды, соответствующей точке перехода, происходит в течение полупериода — периода, что необходимо учитывать при определении различных импульсных нагрузок. Получены аналитические формулы для определения частоты собственных колебаний многослойного кольца дающие удовлетворительное совпадение с экспериментальными данными.  [c.364]


Кольца. Частота изгибных колебаний однородного кольца в его плоскости равна  [c.378]

Радиальные и крутильные колебания обычно имеют высокие частоты. Более низкие частоты имеют место при изгибных колебаниях кольца.  [c.209]

Учитывая равенство V Е1 рг ) = а г, где а — скорость распространения звука вдоль кольца, видим, что рассмотренные выше колебания с растяжением—сжатием и крутильные колебания, как правило, имеют высокие частоты. Намного более низкие значения частот будут получаться при рассмотрении изгибных колебаний кольца.  [c.433]

В случае изгибных колебаний кольца кругового поперечного сечения, состоящих из перемещений, перпендикулярных к плоскости кольца, и кручения, частоты главных форм колебаний можно определить из выражения )  [c.414]

Изгибные колебания части кругового кольца, заделанной обоими концами (фиг. 88). Низшая частота определяется по формуле  [c.418]

В качестве примера падения некоторых собственных частот с увеличением частоты вращения могут служить колебания системы, показанной на рис. 6.34. Здесь две группы радиальных консольных стержней закреплены на вращающемся кольце (оболочке). Первая группа — стержни, ориентированные свободными концами в сторону действия центробежных сил, а вторая — в противоположную. Увеличение частоты вращения приводит к росту собственных частот системы, характеризующихся преобладанием изгибных деформаций стержней первой группы и, напротив, вызывает падение частот системы, которым свойственно преобладание изгибных колебаний стержней второй группы,  [c.116]

Для собственных частот колебаний второй формы (п == 1), показанных на рис. 4(a) — (d), влияние крутильной и изгибной жесткостей на одинаково, в чем нетрудно убедиться, подставив значение п = 1 в уравнения (28) — (32). Частота колебаний чрезвычайно чувствительна к увеличению низших значений этих жесткостей. В отличие от первой формы колебаний в этом случае уменьшение значений вызванное увеличением параметра усиливается с возрастанием изгибной или крутильной жесткостей. Устремив жесткость внутреннего шпангоута к бесконечности, мы перейдем к колебаниям абсолютно жесткого кольца относительно одной из его диаметральных осей, и как нетрудно видеть, увеличение безразмерного момента инерции его поперечного сечения снижает собственные частоты колебаний системы.  [c.26]

Можно привести много примеров этого типа. Так, круговое кольцо, нагруженное равномерно распределенной радиальной нагрузкой, периодически меняющейся во времени (рис. 1, б), при определенном соотношении частот может испытывать интенсивные изгибные колебания. Периодические силы, действующие в срединной плоскости пластинки (рнс. 1, в), при определенных условиях могут вызвать интенсивные поперечные колебания. Периодические силы, действующие на балку узкого поперечного сечения в плоскости ее наибольшей жесткости (рис. 1, г), при определенных условиях могут вызвать изгибно-крутильные колебания из этой плоскости.  [c.348]


В качестве вибровозбудителей используют пластины, кольца и другие детали, выполненные из специальных материалов — пьезоэлектриков. Например, на сх. а — вибровозбудитель в виде пластины, составленной из элементов 1, 2, 3, 4, к которым подсоединены электроды. В пластине могут быть возбуждены продольные колебания при питании электродов С током высокой частоты (элементы 1 и 3 одновременно удлиняются или укорачиваются вдоль оси х) и изгибные колебания при питании электродов А и В (элементы 2 и 4 поочередно укорачиваются или удлиняются).  [c.46]

Колесова резцы 5 — 300 Количество движения 1 — 386, 388, 402 Коллекторные двигатели с серкесным возбуждением 2 — 409 Коллекторы 2 — 382 Коллинеарные векторы I — 226 Колпачки дренажные 2—196 Кольца — Колебания изгибные — Частота 3 — 378  [c.430]

В случае изгибных колебаний кольца с поперечным сечением круговой формы, когда учитываются как перемещения, направленные под прямым углом к плоскости кольца, так и кручение, частоты o нoвныx[фopмfколебаний можно определить с помощью формулы  [c.435]

Переходя к обзору результатов исследований поведения многосвязных оболочек, остановимся прежде всего на работах, посвященных изучению влияния трещин различного типа на напряженно-деформированное состояние цилиндрических труб. Димарогонас [78] рассмотрел задачу об устойчивости длинной трубы (кольца), находящейся под действием внешнего давления. Считалось, что труба имеет продольную щель с глубиной,, не пр-ёвышающей толщину стенки. В работе получено трансцендентное уравнение для критического давления, решение которого представлено в функции от глубины трещины. Автором получены также формы потери устойчивости трубы с внутренними и наружными трещинами. На основе проведенной работы делается вывод о том, что трещины приводят к значительному понижению устойчивости труб. Следует отметить, что сегодня весьма актуальной является пробл ема влияния трещин на динамические параметры элементов несущих конструкций. Исследованию такой задачи посвящена работа Дитриха [79]. В ней приведены результаты исследования изменения собственных частот и форм колебаний труб при появлении различных трещин в сварных щвах. Теоретический анализ выполнен с помощью метода конечных элементов. В работе приведены полученные с помощью ЭВМ графики изменения частот восьми низших тонов изгибных колебаний трубы в зависимости от длины трещины. Соответствующие этим частотам формы колебаний представ- лены в трехмерной форме.  [c.301]

Необходимо отметить еще одно обстоятельство. Благодаря предположеиной однородности кольца начало отсчета угла 0 произвольно, и можно получить другие нормальные колебания тех же частот в результате прибавления к О постоянной. В частности, возможно нормальное изгибное колебание  [c.179]

Переходя к колебаниям искривленных пластинок илн оболочек, мы встречаемся с новыми трудностями, связанными с тем, что между изгибными нормальными колебаниями и нормальными колебаниями, связанными с растяжением, нельзя провести резкой границы. Это уже было показано на примере с кольцом ( 51). Оказывается, однако, что если представить себе бесиредольное уменьшение толш ины пластинки, то нормальные колебания будут стремиться занять место в одной из двух определенных категорий. В одной категории частоты стремятся к определенным пределам это—колебания, связанные в основном с деформацией растяжения следовательно, этот случай аналогичен продольным колебаниям стержня, когда, как было показано, размеры нонеречного сечения не имеют значения. Во второй категории частоты уменьшаются беспредельно, так как в пределе они делаются пропорциональными толш ине пластинки, как и в случаях изгибных колебаний стержня или пластинки.  [c.201]

Излучатели второго типа основываются на различных физич. эффектах электромеханич. преобразования. Как правило, они линейны, т. е. воспроизводят по форме возбуждающий электрич. сигнал. Большинство излучателей УЗ предназначено для работы на к.-л. одной частоте, поэтому в устройстве излучающих преобразователей обычно используются резонансные колебания механич. системы, что позволяет существенно повысить их эффективность. Преобразователи без излучающей механич. системы, напр, основанные на электрич. разряде в жидкости, применяются редко. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магни-тострикционные преобразователи и пьезоэлектрические преобразователи. Элект-родинамич. излучателп используются на самых низких ультразвуковых частотах, а также в диапазоне слышимых частот. Наиболее широкое распространение в низкочастотном диапазоне УЗ получили излучатели магнитострикционного и пьезоэлектрич. типов. Основу магнитострикционных преобразователей составляет сердечник из магнитострикционного материала (никеля, специальных сплавов или ферритов) в форме стержня или кольца. Пьезоэлектрич. излучатели для этого диапазона частот имеют обычно составную стержневую конструкцию в виде пластины из пьезокерамики или пьезоэлектрич. кристалла, зажатой между двумя металлич. блоками. В магнитострикционных и пьезоэлектрич. преобразователях, рассчитанных на звуковые частоты, используются изгибные колебания пластин и стержней или радиальные колебания колец. В среднечастотном диапазоне УЗ применяются почти исключительно пьезоэлектрич. излучатели в виде пластин из пьезокерамики или кристаллов пьезоэлектриков (кварца, дигидрофосфата калия, ниобата лития и др.), совершающих продольные или сдвиговые резонансные колебания по толщине. Кпд пьезоэлектрич. и магнитострикционных преобразователей при излучении в жидкость и твёрдое тело в низкочастотном и среднечастотном диапазонах составляет 50—90%. Интенсивность излучения может достигать нескольких Вт/см у серийных пьезоэлектрич. излучателей и нескольких десятков Вт/см у магнитострикционных излучателей она ограничивается прочностью и нелинейными свойствами материала излучателей. Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрич. преобразователя вогнутой формы, излучающего сходящуюся сферич. или цилиндрич. волну. В фокусе подобных концентраторов достигается интенсивность 10 —10 Вт/см на частотах порядка МГц. В низкочастотном диапазоне используются концентраторы — трансформаторы колебательной скорости в виде резонансных стержней переменного сечения, позволяющие получать амплитуды смещения до 50—80 мкм.  [c.14]



Смотреть страницы где упоминается термин КОЛЕБАНИЯ - КОЛЬЦА колец изгибные — Частота : [c.545]    [c.545]    [c.411]    [c.196]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.37 , c.378 ]



ПОИСК



Колебания изгибные

Кольца — Колебания изгибные — Частота

Кольца — Колебания изгибные — Частота

Кольца — Колебания изгибные — Частота при изгибе

Нетребский М. А. О прочности кольцевых швов сосудов высокого давления Толбатов Ю. А. Влияние контактного давления на изгибную жесткость и частоту колебаний многослойных колец

Частота антирезоиансная изгибных колебаний колец

Частота антирезонансная изгибных колебаний колец

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте